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Abstract 9 

Timely assessment of structural conditions of water diversion pipelines and taking 10 

necessary precautions are essential to ensure the operational safety of large water 11 

diversion structures. This paper presents an integrated visualization framework to 12 

support the safety management of water diversion pipelines. This holistic framework 13 

streamlines data collection, data analysis, warning issuance, and decision-making 14 

support in an integrated platform, which improves the automation level of safety 15 

management and the efficiency of emergency response. A system prototype was 16 

developed based on the proposed framework and implemented in a water supply 17 

project in Tianjin, China. The system prototype can automatically assess the structural 18 

condition of water diversion pipelines and issue corresponding warnings to relevant 19 
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professionals, and provide visual cues and a set of useful functions to support 20 

decision-making. This system prototype and its implementation validate the 21 

applicability and efficacy of the proposed framework. 22 

 23 

Keywords: Water diversion projects; Structural condition assessment; Safety 24 

management; Whole-process management; Visualization. 25 
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1. Introduction 27 

To counter the threats associated with the uneven distribution of water resources, 28 

China has launched a number of water diversion projects such as the South-to-North 29 

Water Diversion Project to alleviate severe water shortages in certain areas [1]. The 30 

South-to-North Water Diversion Project has three routes in the Eastern, Central, and 31 

Western China that respectively divert water from the lower, middle, and upper 32 

reaches of the Yangtze River. This long-distance and inter-basin water diversion 33 

project also connects four major rivers in China: Yangtze River, Huai River, Yellow 34 

River, and Hai River. These water diversion projects have improved urban water 35 

supply and water quality, thereby ensured the well-being of the people, the vitality of 36 

the economy, and the prosperity of the society. 37 

 38 

Structural damages to the water diversion pipelines can result in disastrous 39 

humanitarian, social, economic, and ecological consequences. Therefore, it is 40 

essential to assess the structural conditions of the pipelines in a timely manner and 41 

take immediate actions to handle emergency situations. Instruments have been 42 

developed to monitor the structural conditions of water diversion pipelines [2-4], but 43 

the management information system (MIS) and safety management practice are still 44 

insufficient to realize automatic condition assessment and timely emergency response.  45 

 46 

There are two main limitations in the current practice. First, the manual processing of 47 

monitoring data and the lack of visual cues make the identification of abnormalities in 48 

pipelines time-consuming, which hinders the decision-makings in the event of an 49 

emergency. Second, the data collection, data analysis, warning issuance, and decision 50 
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support have not been seamlessly integrated in the safety management process, and 51 

the functions in existing MIS are not comprehensive to fulfill the whole-process 52 

management of pipeline safety. Such isolated management process and limited system 53 

functions will result in potential safety issues not being identified and emergency 54 

responses being delayed. To address these two challenges, an integrated visualization 55 

framework is proposed in this study to support the whole-process management of 56 

structural safety for water diversion projects. 57 

 58 

2. Limitations in Current Practice 59 

This section reports the limitations in the current practice of pipeline safety 60 

management. From the technical perspective, the first limitation is the manual 61 

processing of a large amount of monitoring data. The advancements of sensing 62 

technologies and mobile communication networks [5-7] have made data collection 63 

automated and rapid, generating a large amount of monitoring data. Manually 64 

processing the data is inefficient and time-consuming, and thus is incapable of 65 

achieving automated condition assessment and timely emergency response. The 66 

second limitation is the lack of a geo-referenced visual environment and 67 

comprehensive analysis tools in the existing MIS [8, 9] to support decision-makings. 68 

Most often, the monitoring data are not directly coupled with geographic coordinates, 69 

thus, decision-makers have to refer to non-intuitive design drawings to locate 70 

abnormalities and analyze in-situ environments. In addition, in the absence of 71 

scientific analysis, engineers solely rely on their experiences to make decisions in 72 

emergency situations. 73 

 74 
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From the organizational and managerial perspective, the first limitation is that the 75 

critical tasks in pipeline safety management, i.e. data collection, data analysis, 76 

warning issuance, and decision support, have not been seamlessly integrated. This 77 

incoherent management process may weaken the competent department’s ability to 78 

identify a potential safety hazard and significantly delay the response action. Studies 79 

have been conducted on data analysis and decision support in pipeline safety 80 

management. Examples include safety diagnosis of hydraulic structures based on data 81 

mining [10, 11], risk assessment for water pipelines [12, 13], mobile computing 82 

technologies for safety inspection [14], and failure mode of pre-stressed concrete pipe 83 

[15-17]. However, the existing studies mainly focused on the development of a single 84 

function for a single task in the safety management. None of them have created a 85 

holistic frameowrk to streamline the whole safety management process of water 86 

diversion projects. 87 

 88 

3. Review of Existing Techniques 89 

3.1. Analysis of monitoring data based on data mining 90 

Data mining techniques have been used for analyzing safety monitoring data in 91 

hydraulic engineering [10, 11], building construction [18, 19], and aerospace 92 

engineering [20, 21]. To enable intelligent and automatic structure safety analysis, the 93 

integration of data mining and cloud computing was explored in [22, 23]. However, 94 

the existing technologies are not readily applicable in water diversion projects. In the 95 

current practice, the process of data collection, data analysis and warning issuance 96 

have not been automated and streamlined. For example, X is a water diversion project 97 

located in Zhejiang Province, China. Although the project has adopted a safety 98 
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monitoring system that uses a general packet radio service (GPRS) cellular network to 99 

obtain monitoring data remotely and automatically, the subsequent data analysis is 100 

performed in a manual and off-line way. As such, it is very difficult to frequently 101 

analyze the monitoring data. Hence, abnormalities may not be identified in a timely 102 

manner, posing significant risks to the water diversion pipelines. In addition, due to 103 

the lack of a warning issuance mechanism, this system cannot inform engineers and 104 

professionals of abnormalities and emergencies. 105 

 106 

3.2. Visualization based on GIS and street view 107 

Geographic information system (GIS) has been used to visualize information and 108 

support decision-making. For instance, different colors were used to represent the risk 109 

degrees of pipeline in GIS environment, and aerial photos were overlaid to improve 110 

the visualization [13, 24, 25]. Coffey et al. [26] used GIS to enhance the pipeline 111 

management and analysis. Liu and Issa [27] integrated three-dimensional (3D) 112 

building information modeling and two-dimensional (2D) GIS to realize 3D 113 

visualization of underground pipeline systems. Wu et al. [28] applied 3D GIS in dam 114 

safety monitoring and developed a visualized management information system. In 115 

addition, Google street views were also used to assess large-scale vegetation [29], 116 

environmental contributions to pedestrian injury [30], and species habitat [31]. 117 

 118 

The integration of 3D GIS and street view in structure safety management can 119 

improve management efficiency and provides intuitive visual cues for 120 

decision-makings. The fusion of safety monitoring data and geographic information 121 

allows users to locate the potential abnormalities in the 3D scenes that are archived in 122 



 

 7 

the GIS platform. Moreover, after an emergency occurs, engineers can utilize the 3D 123 

GIS and street views to analyze the in-situ environment online (e.g. to check 124 

surrounding topography, available transportation routes, and manhole locations), 125 

which can assist the plan of emergency responses. However, the previous studies have 126 

not explored the integration of 3D GIS and street view in water diversion projects. 127 

 128 

3.3. Numerical simulation 129 

Numerical simulation has been widely applied in water diversion projects. Oh et al. 130 

[32] used numerical method to investigate the discharge performance of sluice 131 

passageway. Chen et al. [33] conducted numerical simulation to analyze the damage 132 

mode of concrete gravity dam under close-in explosion. In [15-17], finite-element 133 

software was used to study the failure mode and rehabilitation method of pre-stressed 134 

concrete cylinder pipe (PCCP). 135 

 136 

Numerical simulation is a powerful tool to support decision-makings, since it can 137 

simulate mechanical responses of structure under various working conditions without 138 

carrying out physical experiments. However, due to the complicate operation process, 139 

it is difficult to directly incorporate the numerical simulation into the safety 140 

management process. In order to fully support decision-makings in water diversion 141 

projects, secondary development is necessary for the numerical simulation tool; and 142 

the developed product should be included as an integral part of the management 143 

information system. 144 

 145 

4. Framework for Whole-Process Management of Water Pipeline Safety 146 
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In this study, 3D GIS, street view, data mining, and numerical simulation are 147 

integrated to streamline the data collection, data analysis, warning issuance, and 148 

decision support in a holistic framework for the safety management of water diversion 149 

pipelines. 150 

 151 

4.1. Procedure of whole-process safety management 152 

The entire process of safety management consists of four steps, i.e. data collection, 153 

data analysis, warning issuance, and decision-making support. Shown in Figure 1, the 154 

proposed safety management procedure emphasizes the automation of safety 155 

monitoring and assessment as well as the integration of automated operation with 156 

human intervention.  157 

(1) Automatic collection of monitoring data 158 

The collected data have two sources: 1) monitoring data, such as water pressure, 159 

deformation, and crack, remotely and periodically collected by the automatic 160 

monitoring system; 2) settlement data and photos collected during on-site inspection. 161 

(2) Online analysis and safety assessment 162 

The collected data are automatically analyzed at a predetermined time interval (e.g. 163 

once a day) to detect potential abnormalities based on methods such as trend 164 

recognition and neural network model. An evaluation system is developed to 165 

determine the risk level of the structure based on the analysis of monitoring data. 166 

(3) Real-time warning issuance 167 

When the risk of a pipeline segment reaches a certain level, real-time warnings will be 168 

automatically issued by phone messages and emails to ensure that engineers and 169 

professionals can receive the warnings in a timely manner. 170 
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(4) Decision-making support 171 

In the event of an emergency, engineers and professionals will conduct a 172 

comprehensive safety assessment and make reaction and contingency plan. In this 173 

stage, computer software should be fully utilized to support decision-makings. For 174 

example, GIS and numerical simulation can be used to analyze the surrounding 175 

environment of abnormalities and determine the optimal water supply plan under 176 

adverse conditions. 177 

 178 

4.2. Framework architecture 179 

As shown in Figure 2, a holistic framework is proposed to support the whole-process 180 

management of structure safety for water diversion projects. The proposed framework 181 

consists of four systems, i.e. safety data acquisition system (SDAS), safety analysis 182 

and assessment system (S2AS), simulation and warning system (SAWS), and 3D 183 

visualized management system (3DMS). SDAS, corresponding to the data acquisition 184 

stage of the safety management process, consists of the automatic safety monitoring 185 

module and the personal digital assistant (PDA) in-situ inspection module; S2AS 186 

corresponds to the data analysis stage; SAWS consists of the warning issuance 187 

module and the numerical simulation module, respectively corresponding to the 188 

warning issuance stage and the decision support stage; 3DMS enables data query and 189 

data management in normal operation, and its geo-reference and visualization 190 

capability can be used to support decision-makings after an emergency occurs. 191 

 192 

In Figure 2, the green arrow lines represent the data flow during the period of 193 

automatic operation. SDAS integrates multi-source safety monitoring data with 194 
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different formats into one uniform database and provides data access interface to the 195 

other three systems. S2AS periodically and automatically analyzes the data collected 196 

by SDAS, in which data mining techniques are used to recognize abnormalities and 197 

evaluate structure safety. If the risk levels reach certain thresholds, the abnormalities 198 

will be sent to the warning issuance module of SAWS, which will then inform the 199 

competent department via phone messages and emails. In addition, the warning 200 

messages will also be issued to 3DMS to help engineers to locate the abnormalities in 201 

3D environment. 202 

 203 

Upon the receipt of warning messages, engineers and professionals will intervene 204 

(data flow represented by the red arrow lines in Figure 2). In this stage, the proposed 205 

framework can support decision-making from two aspects. First, the numerical 206 

simulation module provides scientific analysis for decision makers to adjust water 207 

supply plan under emergency. This module maps the load information reflected by the 208 

monitoring data to an established finite element (FE) model, and considers the 209 

time-varying effects of material mechanical properties. As such, realistic simulation 210 

can be conducted to assess the structure safety under different supply flows. Second, 211 

3DMS can help engineers to locate the potential safety issues by positioning abnormal 212 

data points. In addition, the system combines street views and 3D GIS to enable vivid 213 

visualization of in-situ environment of abnormal locations to provide decision makers 214 

detailed insights. 215 

 216 

5. System Prototype Development 217 



 

 11 

To validate the applicability of the proposed framework, a system prototype was 218 

developed and implemented on a water supply project in Tianjin, China. This project 219 

is part of the auxiliary project in the middle route of China's South-to-North Water 220 

Diversion Project. The main structures under consideration are pre-stressed concrete 221 

cylinder pipes (PCCP) and steel pipes. This section elaborates the development and 222 

implementation of the system prototype. 223 

 224 

5.1. SDAS 225 

The system uses the hardware and software developed by Geokon® [9] to 226 

automatically and remotely collect safety monitoring data (e.g. internal/external water 227 

pressure, deformation and crack). Data is collected at a user-defined time interval (e.g. 228 

once a day) by using the data management software installed on a server [34]. The 229 

collected data is transmitted to the ACCESS database on the server through GPRS, 230 

3G or 4G networks. In addition, the settlement data are manually collected by leveling 231 

surveying. Figure 3 illustrates how SDAS integrates the above data. The database 232 

server carries two database platforms: ACCESS and SQL Server. ACCESS is the 233 

designated software of Geokon® automatic monitoring system; and SQL Server is 234 

used by the four subsystems in the prototype. The main source of monitoring data for 235 

safety analysis is the data collected by the Geokon® system, thus it should be 236 

seamlessly integrated into the SQL Server. To this end, an interface program is 237 

developed to obtain the updated data from the ACCESS database at the predetermined 238 

interval (e.g. once a day). 239 

 240 
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PDA in-situ inspection module was designed to upload settlement data collected by 241 

leveling surveying and geo-registered photos captured during inspection. In case of 242 

poor mobile communication signal, the monitoring data and field photos will be 243 

stored in the device and will be re-uploaded when the internet signal is recovered. The 244 

module was developed based on the Eclipse platform and the operation environment 245 

is Android. 246 

 247 

5.2. S2AS 248 

S2AS aims to recognize abnormalities by analyzing the massive monitoring data 249 

using data mining techniques such as statistics analysis and neural network, and to 250 

assess the risk level of structure safety based on the detected abnormalities. Trend 251 

recognition, extreme value recognition, neural network model, and monitoring index 252 

assessment are used to recognize abnormalities. 253 

 254 

(1) The trend recognition method identifies abnormalities by comparing the current 255 

data trend with the overall trend and examining to what extent the current trend 256 

matches the overall trend. The data trend can be defined by the notion of 257 

“succession”. The elements in a continuous data series 
{ }ny

 can be categorized 258 

into two groups by the mean value ( y ) of the series: those greater than y  are 259 

defined as “positive” while those less than y  are defined as “negative”. Then the 260 

successive elements with the same plus-minus sign constitute a succession. The 261 

number of the elements in a succession should be no less than m, of which the 262 

value is determined by the sampling frequency. The successions with positive 263 
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elements are called “positive succession” while those with negative elements are 264 

called “negative succession”. 265 

 266 

a) Current data trend 267 

If the last succession of a monitoring series is positive, the series currently has an 268 

upward trend; if it is a negative succession, the series currently has a downward trend.  269 

 270 

b) Overall data trend 271 

In a monitoring series, if the number of the positive successions is greater than that of 272 

the negative successions, the series has an overall upward trend; if the number of the 273 

positive successions is less than that of the negative successions, the series has a 274 

downward trend. 275 

 276 

c) Trend recognition 277 

If the current data trend contradicts the overall data trend, the present monitoring data 278 

are judged as abnormal; otherwise, the present monitoring data are normal. 279 

 280 

(2) The extreme value recognition method identifies abnormalities based on the 281 

comparison of present data and the extreme values in the history. When the value 282 

of present monitoring data is greater (or less) than the maximum (or minimum) 283 

value in the history, the present value can be judged as abnormal. 284 

 285 

(3) The neural network model method identifies abnormalities by comparing the 286 

measured value with the predicted value and examining to what extent these two 287 
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values can match. To predict the future monitoring data, neural network models 288 

are established using the monitoring time series, which can be described by Eq. 289 

(1). 290 

1( ) ( ( 1),..., ( ), ( ),..., ( ))ny t f y t y t d x t x t= − −  291 

Where, d is the number of delays, which determines the number of historical data 292 

points used in the model; y is the monitoring index; t is the sampling time; x1, …, xn 293 

are the effective factors. In terms of monitoring index such as crack and strain, the 294 

effective factors include internal water pressure, external water pressure, and 295 

settlement. By changing the number of neurons of the hidden layer, the number of 296 

delays, and the transfer function, the artificial neural network (ANN) model is 297 

optimized to achieve the required precision. 298 

 299 

After a suitable model is obtained, the abnormal data can be identified with the 300 

following method (as described by Eq. (2)): 301 

ˆ normal;

ˆ abnormal.

i i

i i

y y bS

y y bS

 − 


− 

，

，
 302 

Where, iy
 is the measured value while 

ˆ
iy
 is the predictive value by the model; S is 303 

the standardized residual of the ANN model; b is the control parameter, which can 304 

determined based on the requirement of the actual project, and is recommended to be 305 

set as 2~3.The established models are only suitable for specific operation conditions 306 

(e.g. evacuation, normal operation, and extreme working condition). As a result, the 307 

ANN model should be retrained when the operation condition is changed. 308 

 309 

Eq. (2)  

Eq.(1) 
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(4) The monitoring index assessment method identifies abnormalities based on the 310 

comparison of the measured value and the predefined bounds. Based on empirical 311 

experience, the value of a monitoring index is required to be within 
low up,  y y . If 312 

the present measured value is within this bound, then it is judged as normal; 313 

otherwise, the measured value is judged as abnormal. 314 

 315 

As illustrated in Figure 4, a structure safety assessment system is developed. This 316 

system consists of two layers. In the first layer, risk level of a measuring point is 317 

evaluated based on the assessment results of the aforementioned four abnormality 318 

recognition methods (see criteria A on the left side of Table 1). In the second layer, 319 

structure safety of a pipeline segment is evaluated based on the risk levels of all the 320 

measuring points in that pipeline segment (see criteria B on the right side of Table 1). 321 

If the pipeline safety assessment reaches “yellow” level, alarms will be issued by the 322 

warning issuance module of SAWS. 323 

 324 

5.3. SAWS 325 

SAWS consists of two modules, i.e. warning issuance module and numerical 326 

simulation module. The warning issuance module provides an interface to manage the 327 

phone numbers and email accounts of all the participants involved in the project. 328 

When warnings are issued via phone messages, the subsequent procedures will be 329 

followed. First, service is called through the application programming interface (API) 330 

provided by the message service provider to submit request. After the service provider 331 
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receives the request, the warning messages are then sent to the mobile phones of 332 

related personnel through telecommunication operators. 333 

 334 

Numerical simulation module is developed based on the ABAQUS finite element (FE) 335 

analysis software. A 3D FE model of PCCP (the main structure of the project) is built 336 

according to a typical cross section (see Figure 5). In the established model, 337 

Mohr-Coulomb model, plastic damage model, and 3D linear elastic model are 338 

respectively used to simulate soils (including foundation layer, cushion layer, and 339 

backfill soils), tube core concrete and mortar layer, and steel cylinder and steel bars. 340 

In order to realistically simulate the present condition of PCCP, the load information 341 

(internal and external water pressure) reflected by the monitoring data and the 342 

material mechanical properties are mapped into the FE model after considering the 343 

time-varying effects. To this end, all the elements are classified according to material 344 

types to make it convenient to modify material parameters based on the established 345 

degradation model of material properties. The PCCP FE model needs to be uploaded 346 

to the database in advance, and C#.NET and Python language are used to map the 347 

real-time material parameters and load information to the elements. 348 

 349 

5.4. 3DMS 350 

Safety monitoring in the project requires multi-source information including 351 

monitoring data, inspection photos, and warning messages. This rich information 352 

needs to be embedded in a spatial context to provide meaningful guidance for the 353 

pipeline operation. 3DMS integrates 3D models, aerial photos, street view, and other 354 

spatial data to construct a 3D virtual scene for the water supply project, with which 355 
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the safety monitoring information is dynamically coupled. This integrated system 356 

realizes the 3D visualization management of safety monitoring and makes it possible 357 

for engineers to analyze in-situ environments online. 358 

 359 

5.4.1. Integration of multi-source spatial information and cross-platform retrieval of 360 

street view 361 

Figure 6 illustrates the integration of various elements on a 3D GIS platform to 362 

construct a 3D virtual scene. First, the aerial photos are overlaid with Digital 363 

Elevation Model (DEM) to build the ground surface model for the project site. 364 

Second, the vector data including the transportation network and typical landmarks 365 

are overlaid with the aerial photos to indicate the geographical locations. Third, the 366 

3D models (e.g. pipelines, monitoring station, and monitoring instruments) are 367 

exported from 3D Max and imported to the 3D GIS platform using the WGS-84 368 

coordinate system. The layer of warning symbol (exclamation mark with different 369 

color to indicate different level of risk) is above the monitoring instruments (listed in 370 

the bottom right table in Figure 6) to indicate the abnormal positions along a pipeline 371 

segment. The street view along the pipeline segment is published through a third-party 372 

software. Clicking the video symbol located above the pipeline will provide users 373 

access to the street view, thus realizing the interaction and linkage between the street 374 

view and the 3D virtual scene. All the elements are integrated on the virtual globe that 375 

is defined on the platform. 376 

 377 

In this project, data collection and publication of street view are accomplished by the 378 

third party. Before data collection, a route is designed according to general layout of 379 
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the project. Then, along the designed route, photos of each station are captured by 380 

professionals using specialized collecting devices. The integration of 3D GIS platform 381 

and the street view platform needs to accomplish the following functionalities: (1) 382 

implant the street view into the 3D GIS platform, integrating the virtual scene of 383 

pipeline safety monitoring with street view in one screen; (2) retrieve the street view 384 

at the indicated position by evoking the associated function in the 3D GIS platform; 385 

(3) automatically roam in the virtual 3D scene by switching from the street view. 386 

 387 

Both the street view platform and the 3D GIS platform adopt the technological 388 

framework of Web. The user interface and the specific logic are separate, and they 389 

provide Javascript API for secondary development. Hence, the independence of the 390 

data layer and application layer are preserved in the integration (as shown in Figure 391 

7). The open-source HTML page is coded using Document Object Model (DOM) to 392 

implant the street view in the 3D GIS platform page through the HTML <iframe> 393 

label. In addition, the data communication is also realized between parent and child 394 

pages. When users click a certain feature point in the 3D scene, the click event will 395 

evoke the function to obtain the coordinates of that point. The obtained coordinates, as 396 

a parameter, will then be input to a specific function provided by the API of the street 397 

view platform to retrieve the street view at the indicated point. Using the same 398 

method, the switching from street view to 3D virtual scene can be realized. 399 

 400 

5.4.2. Dynamic integration of safety monitoring information 401 

To manage the safety monitoring information, SQL Server is adopted as the database 402 

platform. The photos and 3D models are stored in a file format, while the database 403 
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only stores the file path. Figure 8 presents some of the database tables and their 404 

connections. The original monitoring data, in-situ photos, and warning messages are 405 

all linked to the instrument models by the instrument ID (Instrument_ID), and 406 

subsequently linked to the coordinate information. All the above safety monitoring 407 

information can be regarded as the attribute data of the instrument models, thus 408 

establishing the connection to spatial coordinate data. As a result, all of the safety 409 

monitoring information can be spatially located in the 3D virtual scene. 410 

 411 

6. System Application 412 

The developed system has been operated since Dec. 2015. In normal operation, 413 

monitoring data is updated via the developed interface at 6 a.m. every day. Then, the 414 

updated data is automatically analyzed. Up to now, the safety assessment results were 415 

mostly green or blue, implying that the operation of pipeline was in normal condition. 416 

From January 17 to 19, 2016, the system issued three warnings. The highest warning 417 

level was red (as shown in Figure 9(a)). Upon the receipt of the warnings, 3DMS was 418 

used to locate the warning position (seen in Figure 9(b)). Through the street view 419 

interactive browsing, surrounding environment of one of the warning positions was 420 

analyzed online. That position has a wide landscape and is close to the main road and 421 

inspection manhole (as shown in Figure 9(c)). All these factors are in favor of the 422 

execution of on-site inspection and restoration. 423 

 424 

Given that the duration of warning issuance coincided with that of trial operation, it 425 

was assumed that the alarms were caused by the sharp rise of internal water pressure 426 

as a result of diverting water. To verify this assumption and assess the pipeline safety 427 
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condition during trial operation, decision-support functions of the system were used to 428 

conduct analysis. Figure 10(a) shows that the listed three monitoring points of internal 429 

water pressure had the similar trends. There were two peaks from Jan.18, 8:00 to 430 

20:00 and from Jan. 19 8:00 to 20:00, which corresponded to the actual period of 431 

diverting water. Figure 10(b) shows the water head along the pipeline. There are 4 432 

lines in the diagram. The max head and the min head were respectively generated 433 

according to the maximum and the minimum of all the water pressure monitoring 434 

points along the pipeline on that day. The long-term head and the short-term head 435 

respectively indicate the theoretical water head under long-term supply flow and 436 

short-term supply flow. As can be seen from Figure 10(b), the water pressure along 437 

the pipeline corresponded to the theoretical values, indicating that the operation of the 438 

pipeline after diverting water was in a normal condition. Numerical simulation 439 

module of SAWS was used to evaluate the stress during the trial operation. Figure 440 

10(c) presents some numerical simulation results. The unit of the stress cloud image is 441 

Pa. The loads on the water pipeline were mainly compressive stress. The largest 442 

compressive and tensile stress satisfied the requirement of PCCP pipeline. 443 

 444 

Based on the analyses, it was confirmed that the issued warnings were caused by the 445 

sharp rise of internal water pressure as a result of diverting water. The analysis results 446 

of water head and numerical simulation demonstrated the good operation condition of 447 

the pipelines. Consequently, the warnings were canceled by the competent 448 

department. 449 

 450 

7. Results analysis 451 
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7.1. Warning analysis 452 

To validate the efficacy of the system, a survey was conducted to examine whether 453 

the warnings issued by the system can reflect the realistic pipeline conditions. By 454 

in-situ investigations, the reasons of warnings were investigated and then compared 455 

with the results of system assessment (see Table 2). As listed in Table 2, the warnings 456 

can be divided into three categories based on their inducements, i.e. warnings induced 457 

by operation adjustment, warnings induced by instrument failure, and warnings 458 

induced by structural issues. The frequencies and typical cases for each type of the 459 

warnings have also been presented in Table 2. 460 

 461 

From Table 2, it was found that:  462 

(1) The system can identify various kinds of data abnormalities induced by different 463 

factors (e.g. operation adjustment, instrument failure, and structural issues), and 464 

issue the relevant levels of warnings. 465 

(2) Up to now, the most frequent warnings were those induced by operation 466 

adjustment, which probably were due to the frequent trial test in the early stage of 467 

operation.  468 

(3) Different kinds of warnings are characterized by different patterns: warnings 469 

induced by the operation adjustment usually occur on several pipeline segments at 470 

the same time; warnings induced by instrument failure occur on individual 471 

monitoring points, and the corresponding risk levels are relatively low; warnings 472 

induced by structural issues usually occur on several monitoring points at the 473 

same time, and the abnormal points are generally located at the adjacent 474 

monitoring sections. 475 
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7.2. Precision of neural network model 476 

In this section, joint meter JT-1-J1 and strain gauge JT-4-SP1 were taken as examples 477 

to demonstrate the ANN training process and validate the precision of the model. As 478 

illustrated by Figure 11, the inputs of the model include the crack (or strain) during 479 

the last d sampling periods, present internal water pressure, external water pressure, 480 

and settlement. The output is the present crack (or strain). Figure 12 shows the data 481 

graphs of JT-1-J1, JT-4-SP1, and the corresponding external loads between Dec. 482 

/1st/2016 and Jan. /31st/2017.  483 

 484 

The data between Dec. /1st/2016 and Jan. /20th/2017 (normal operation with the flow 485 

of 7m3/s) was used as training samples (totally 51 groups). The network parameters 486 

(d, the number of neurons of the hidden layer, and the transfer function) are adjusted 487 

to optimize the model. For JT-1-J1, when d, the number of neurons of the hidden 488 

layer, and the transfer function are respectively set as 2, 12, and tansig, the optimum 489 

model is obtained (with the Mean Squared Error (MSE) of 7.22×10-4), as shown on 490 

the left side of Figure 13 (a). For JT-1-J1, the optimal parameter values are 3, 10 and 491 

tansig, upon which the MSE of the model is 1.52×10-3, as shown on the left side of 492 

Figure 13 (b).  493 

 494 

The data between Jan. /21st/2017 and Jan. /31st/2017 (working condition ditto) was 495 

used as testing samples (totally 11 groups). The results are presented on the right side 496 

of Figure 13. As shown by Figure 13, the predictive values match well with the 497 

measured values. The maximum relative errors of prediction for JT-1-J1 and 498 

JT-4-SP1 are both less than 1.0%, which indicates a high accuracy of prediction. 499 
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 500 

8. Conclusions and Future Works 501 

Current practice for safety management in water diversion projects suffers from both 502 

technical and managerial limitations. To address the limitations, this study proposes to 503 

adopt 3D GIS, street view, data mining and numerical simulation, to integrate data 504 

collection, data analysis, warning issuance and decision-making support into a holistic 505 

framework for safety management of water diversion projects. This proposed 506 

framework streamlines the whole management process and improves the efficiency of 507 

emergency response. To implement the proposed framework, a system prototype was 508 

developed and implemented in a water supply project located in Tianjin, China. The 509 

system operates well up to now, which can automatically evaluate the pipeline safety 510 

condition and issue warning messages. The system also provides a decision-support 511 

platform with comprehensive functions after a warning is issued. The application 512 

study suggests that the prototype system has achieved the expected requirements, thus 513 

validating the efficacy of the proposed framework. 514 

 515 

The long-term performance of this developed system under different working 516 

conditions needs further observation. Moreover, although the system has the 517 

visualization capability to locate warning position and analyze in-situ environment, it 518 

is still difficult for engineers to determine the location of potential safety issues during 519 

on-site inspection. In future works, the augmented reality (AR) technology is expected 520 

to address the limitation. Using AR in mobile devices or using the specialized device 521 

such as Hololens, the virtual scene of pipeline layout and the safety assessment results 522 
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can be embedded into the real environment, thus helping the engineers to determine 523 

the alarm position. 524 
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Tables 661 

Tab. 1. Pipeline safety assessment criteria. 662 

First layer - Abnormalities Recognition  Second layer- Pipeline Safety Assessment 

Risk level Criteria – A  Risk level Criteria – B Warning? (Y/N) 

Green Recognized ‘normal’ by 

all the 4 methods 

 Green With no measuring point over 

‘blue’ level 

N 

Blue Recognized ‘abnormal’ 

by 1 of the 4 methods 

 Blue With 1 measuring point 

reaching ‘yellow’ level 

N 

Yellow Recognized ‘abnormal’ 

by 2 of the 4 methods 

 Yellow With more than 3 measuring 

points reaching ‘yellow’ level, 

or with 1 measuring point 

reaching ‘orange’ level 

Y 

Orange Recognized ‘abnormal’ 

by 3 of the 4 methods 

 Orange With more than 3 measuring 

points reaching ‘orange’ level, 

or with 1 measuring point 

reaching ‘red’ level 

Y 

Red Recognized ‘abnormal’ 

by all of the 4 methods 

 Red With more than 3 measuring 

points reaching ‘red’ level 

Y 

 663 

  664 
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Tab. 2. Warnings issued during the system application. 665 

Notes: 1. Method 1# ~ Method 4# separately represent the aforementioned 4 abnormalities recognition methods (i.e. trend recognition, extreme value 666 

recognition, neural network model, and monitoring index assessment). 667 

      2. The symbol “√” refers to normal while “×” refers to abnormal; the risk level is obtained according to the criteria in Table 1. 668 

3. The monitoring points can be described as “segment - section - instrument”, and each type of the instruments is denoted by certain characters: joint 669 

meter - J, strain gauge - SP, external water pressure meter - P, internal water pressure meter - PI.670 

Type 
Number 

of times 

Typical case 

Time and 

location 

Risk level of 

pipeline 

Monitoring 

point 

Method 

1# 

Method 

2# 

Method 

3# 

Method 

4# 

Risk level of 

Monitoring point 

Reason 

description 

Warnings 

induced by 

operation 

adjustment 

 

7 

01/18/2016 

Segment. JS 

Red 

JS-1-J1 √ × × √ Yellow 

Sharp rise of 

internal water 

pressure during 

trial operation 

JS-2-J3 × × × √ Orange 

JS-3-SP1 × × × × Red 

JS-3-SP2 × × × × Red 

JS-3-PI × × × × Red 

01/18/2016 

Segment. F1 

Orange 

F1-1-J1 √ × × √ Yellow Sharp rise of 

internal water 

pressure during 

trial operation 

F1-2-PI × × × × Red 

F1-3-J3 × × × √ Orange 

Warnings 

induced by 

instrument 

failure 

3 

03/20/2016 

Segment. F1 

Yellow 

F1-1-J1 √ × × × Orange 

Instrument fault 

with joint meter 

F1-1-J1 

F1-1-J2 √ √ √ √ Green 

F1-2-P √ √ √ √ Green 

Warnings 

induced by 

structural 

issues 

2 

12/11/2016 

Segment. JG 

Orange 

JG-1-J1 √ × × × Orange 

Leakage in the 

joint between 

steel pipe and 

PCCP  

JG-1-J2 √ × × √ Yellow 

JG-2-J3 × × × × Red 

JG-2-J4 × × × √ Orange 

JG-2-P1 √ × × √ Yellow 

03/05/2017 

Segment. JL 

Orange 

JL-5-J5 √ × × × Orange 

Leakage in the 

joint between  

steel pipe and 

PCCP 

JL-5-J6 √ √ × √ Blue 

JL-5-P3 × × × √ Orange 

JL-6-J7 × × × √ Orange 

JL-6-J8 √ × × √ Yellow 
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Figures 671 

 672 

Fig. 1. Flowchart of whole-process pipeline safety management.  673 

 674 

Fig. 2. Architecture of the proposed framework. 675 
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 676 

Fig. 3. Technical route of safety monitoring data integration. 677 

 678 

Fig. 4. Safety assessment system of water diversion projects. 679 
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 680 

Fig. 5. 3D finite element model of PCCP. 681 

 682 

Fig. 6. Organization of multi-source information for safety monitoring.  683 

 684 

Fig. 7. Cross platform integration of street view. 685 
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 686 

Fig. 8. Diagram of dynamic integration of safety monitoring information.  687 

 688 

Fig. 9. (a) Warning massage on mobile phone; (b) Warning issuance on 3D GIS 689 

platform; (c) Surrounding environment of one warning position.  690 
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 691 

Fig. 10. Safety analysis during trial operation. 692 

 693 

Fig. 11. ANN models for JT-1-J1 and JT-4-SP1.  694 
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 695 

Fig. 12. Data graphs of selected monitoring points and external loads. 696 

 697 

Fig. 13. Precision analysis of the established neural network model. 698 


