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Abstract 8 

Accurate recognition of construction waste (CW) compositions using computer vision (CV) 9 

is increasingly explored to enable its subsequent management, e.g., determining chargeable 10 

levy at disposal facilities, or waste segregation using robot arms. However, applicability of 11 

existing CV approaches for the recognition of CW mixtures is limited by their relatively low 12 

accuracy, characterized by a failure to distinguish boundaries among different waste 13 

materials. This paper aims to propose a novel boundary-aware Transformer (BAT) model for 14 

fine-grained composition recognition of CW mixtures. First, a preprocessing workflow is 15 

devised to separate the hard-to-recognize edges from the background. Second, a Transformer 16 

structure with a self-designed cascade decoder is developed to segment different waste 17 

materials from CW mixtures. Finally, a learning-enabled edge refinement scheme is used to 18 

finetune the ignored boundaries, further boosting the segmentation precision. Performance of 19 

the BAT model was evaluated on a benchmark dataset comprising nine types of materials in a 20 

cluttered and mixture state. It recorded a 5.48% improvement of MIoU (mean intersection 21 

over union) and 3.65% of MAcc (Mean Accuracy) against the baseline. The research 22 

contributes to the body of interdisciplinary knowledge by presenting a novel deep learning 23 

model for semantic segmentation in recognizing construction waste compositions. It can also 24 

expedite the applications of CV in construction waste management to achieve a circular 25 

economy. 26 

 27 
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Construction waste (CW), or construction and demolition (C&D) waste, accounts for a 32 

significant proportion in the total waste stream. As stated in a World Bank report (Hoornweg 33 

and Bhada-Tata, 2012), CW such as rubble, concrete and masonry is a major component that 34 

can represent as much as 40% of the total solid waste generated in some cities. In Hong 35 

Kong, while the construction sector contributes less than 5% of the annual gross domestic 36 

product (GDP) (Leung and Wong, 2004), CW it generated takes up one quarter of the waste 37 

that ends up in landfill (HKEPD, 2020). Faced with the mountainous CW, the importance of 38 

construction waste management (CWM) can never be overstated. Effective CWM relies on 39 

yardstick information of CW composition. For example, it is a common practice in countries 40 

such as the United Kingdom (Avery Weigh-Tronix, 2010) and Australia (NSWEPA, 2018) to 41 

levy different disposal fees according to the composition of CW dumps (Yuan et al., 2021a). 42 

In addition, when CW is segregated in recovery facilities, information on waste material 43 

types and composition is essential for sorting operation enabled by robots. 44 

 45 

The use of computer vision (CV) in waste recognition is promising, as photographs are easy 46 

and cheap to collect, and suitable for the analyses of a great variety of waste materials. 47 

Relevant research has been ongoing for more than two decades (Faibish et al., 1997), trying 48 

to recognize waste materials from images and enabling various waste management 49 

applications, such as household waste classification (Srinilta and Kanharattanachai, 2019; 50 

Yang et al., 2021), bin level detection (Aziz et al., 2018; Hannan et al., 2016) and material 51 

segregation (Ku et al., 2020; Lukka et al., 2014). In early years, most of the research 52 

attentions were paid to the recognition of municipal solid waste (MSW) (Sauve and Van 53 

Acker, 2020). Recently, stimulated by the economic benefits and technological development, 54 

growing studies have been devoted to the applications of CV in the CWM. While some of 55 

these studies aimed to facilitate source separation on construction site (Lau Hiu Hoong et al., 56 

2020; Wang et al., 2019a), others provided technologies to enable the processing of 57 

construction materials at centralized disposal facilities (Chen et al., 2021; Kujala et al., 2015; 58 

Lukka et al., 2014). 59 

 60 

Despite the progress has been made, existing methods may encounter difficulties in 61 

transferring from laboratory environments to practical industrial practice, primarily for 62 

insufficient precision and granularity of their recognition results. First, existing research tends 63 

to focus on the task of image classification, which can only identify whether the waste item in 64 

a given image belongs to one of the several predetermined categories or not. Recognition 65 

with such low granularity might be suitable for assisting household residual classification, but 66 

is not sufficient for determining composition of CW mixtures, which usually comprise 67 

multiple types of materials in a highly cluttered state. Second, although there have been 68 

studies (Wang et al., 2019a) trying to distinguish and locate multiple instances of different 69 

waste materials by the use of object detection techniques, they are not oriented to practical 70 

engineering applications. Rather, such studies usually simplify the problem as one to 71 



 

3 

 

recognize individual waste items appearing against a simple, unified background, ignoring 72 

the complexity of real-life context and the heterogeneous nature of CW (Awe et al., 2017; 73 

Nowakowski and Pamuła, 2020). 74 

 75 

Realizing the above limitations, Lu et al. (2021) proposed an approach to recognizing CW 76 

composition in its original cluttered state by using semantic segmentation, a technique that 77 

can deliver fine-grained information such as types of waste materials, and their corresponding 78 

pixel areas in images. The research set a benchmark for subsequent studies, with a mean 79 

intersection over union (MIoU) of 0.56 in distinguishing 9 types of CW. However, there is 80 

room for further improvement. One notable limitation of the previous approach is its failure 81 

to precisely depict waste materials' boundaries, resulting in a relatively low MIoU. The 82 

deficiency in boundary detection can potentially be addressed by recent advancements in the 83 

CV community and the incorporation of boundary-aware processing techniques. For 84 

example, Transformer, a deep learning model primarily used for natural language processing 85 

(NLP), has been applied to undertake CV tasks, demonstrating superior performance than 86 

traditional convolutional neural network (CNN)-based structure (Dosovitskiy et al., 2020). 87 

 88 

This paper aims to propose a boundary-aware semantic segmentation model based on the 89 

Transformer architecture for the robust CW composition recognition in fine granularity. We 90 

called the newly proposed framework “boundary aware Transformer (BAT)”. It contributes to 91 

the problem of computer vision-enabled CW composition recognition, which allows the 92 

robust and fine-grained recognition of waste materials from cluttered CW mixtures. The 93 

novelty of the model lies in the integration of a preprocessing module that separately handles 94 

the micro inter-material edges, a Transformer-based waste segmentation structure with 95 

cascade decoding, and a model-agnostic boundary refinement scheme enabled by SegFix. 96 

This paper is organized as follows. Subsequent to this introductory section, Section 2 97 

describes the status quo of CV in waste recognition. Section 3 illustrates the proposed 98 

boundary-aware model for CW composition recognition, and Section 4 delivers its 99 

implementation results. Section 5 concludes the paper with the main findings and potential 100 

future works. 101 

 102 

2. Literature review 103 

According to the differences of the used CV techniques, existing research on waste recognition 104 

can be divided into two streams. One is based on image classification, and the other is based 105 

on object detection or semantic segmentation. In this chapter, we first review the two streams 106 

of works in CV-enabled waste recognition in Sections 2.1 and 2.2, respectively, and then an 107 

introduction of attention mechanisms and Transformers is delineated in Section 2.3. 108 

 109 

2.1. Waste recognition based on image classification 110 

Waste recognition based on image classification aims to classify a given waste image into one 111 

of the predetermined categories. Previous research attention has been primarily paid to the 112 
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classification of MSW, e.g., paper, plastic, organic, and metal. Traditionally, features of waste 113 

materials first need to be hand-engineered, and then input to machine learning models such as 114 

support vector machine (SVM) (Özkan et al., 2015; Paulraj et al., 2016; Wang et al., 2019b) 115 

and neural networks (Faibish et al., 1997; Ramli et al., 2010) for classifier training. 116 

Applicability of these traditional approaches is limited due to the extensive manual efforts for 117 

features handcrafting and relatively low robustness.  118 

 119 

With the resurgence of deep learning (DL), CNN has become the predominant model in 120 

waste recognition. Based on a public dataset comprising six common waste types provided by 121 

(Yang and Thung, 2016), a series of research (Bircanoğlu et al., 2018; Huang et al., 2020; 122 

Mao et al., 2021; Meng and Chu, 2020; Zhang et al., 2021) has been carried out to recognize 123 

single waste objects appearing against a relatively simple background. Zhang et al. (2021) 124 

integrated a self-monitoring module into ResNet18 for recyclable waste classification, which 125 

can recognize the six waste types in TrashNet with an accuracy of 95.87%. Mao et al. (2021) 126 

employed a genetic optimization algorithm to finetune the hyperparameters of DenseNet, and 127 

achieved a 99.60% classification accuracy on TrashNet. 128 

 129 

Compared with MSW recognition, only a limited number of works have focused on using 130 

image classification techniques for CW recognition (Brisola et al., 2010; Chen et al., 2021; 131 

Lau Hiu Hoong et al., 2020; Xiao et al., 2020). Xiao et al. (2020) integrated handcrafted 132 

features such as colors and gray level co-occurrence matrix and CNN-extracted features with 133 

the extreme learning machine (ELM) for the classification of five typical CW categories, i.e., 134 

wood, brick, rubber, rock, and concrete. Lau Hiu Hoong et al. (2020) proposed a method 135 

based on CNN which can determine composition of recycled aggregates in near real time. 136 

Chen et al. (2021) proposed a hybrid approach to integrating visual features extracted by a 137 

DenseNet-169 and physical features such as weight and waste depth for unattended gauging 138 

of inert content (e.g., rock, gravel, earth and sand) proportion in CW mixtures. 139 

 140 

Despite the high performance attained by the aforementioned research, image classification 141 

can only reveal if an image contains a certain material category, but fails to provide 142 

information of finer granularity regarding the location, geometry and boundaries of waste 143 

materials. Such fine-grained information is essential to enable various applications in 144 

industrial practice, e.g., composition measuring and waste segregation with robotics. This is 145 

especially the case when multiple targets appear simultaneously in real-life context, which is 146 

the common settings in practice.  147 

 148 

2.2. Waste recognition based on object detection/semantic segmentation 149 

In recent years, more and more researchers have realized the limitations of image 150 

classification and turned to investigate the applications of object detection or semantic 151 

segmentation in the waste management industry (Anjum and Umar, 2018; Liang and Gu, 152 
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2021; Panwar et al., 2020; Wang et al., 2019a). In the field of computer vision, object 153 

detection is a task that aims to locate objects of different types in images with bounding 154 

boxes, while semantic segmentation goes further in granularity by distinguishing pixel areas 155 

corresponding to different semantic classes (Bhola et al., 2018; Mansouri, 2019). Previous 156 

research has investigated the applicability of various CNN architectures such as R-CNN (Ku 157 

et al., 2020), Faster R-CNN (Awe et al., 2017; Nowakowski and Pamuła, 2020), and Mask R-158 

CNN (Panwar et al., 2020; Proença and Simões, 2020) in detecting or segmenting MSW in 159 

contexts. Liang and Gu (2021) proposed a multi-task learning architecture based on CNN to 160 

simultaneously classify and locate household and residential wastes. To enable such research, 161 

corresponding datasets with multiple waste items in real-life background were collected or 162 

even made publicly available (Liang and Gu, 2021; Proença and Simões, 2020). 163 

 164 

Similar research efforts have been made in construction waste management. Lukka et al. 165 

(2014) and Kujala et al. (2015) incorporated computer vision as a core module of a robotic 166 

system called ZenRobotics Recycler, which can detect, locate, and classify construction 167 

wastes on conveyor belts for automatic segregation. Ku et al. (2020) devised a grasp 168 

detection approach based on R-CNN for the processing of construction and demolition 169 

wastes. In (Wang et al., 2019a), CW detection models were trained based on the Faster R-170 

CNN and Mask R-CNN architecture, which can enable robots to recycle nails, screws, and 171 

residual pipes and cables on construction site. It is observed that most of previous research 172 

mainly focused on detecting separate CW objects in a relatively well-control condition. While 173 

such research is helpful for waste segregation in semi-structured environments such as 174 

recovery facilities, it fails to work in scenarios where heterogenous materials are randomly 175 

mixed up, e.g., truck-loaded CW. 176 

 177 

To address the issue, Lu et al. (2021) proposed an approach based on DeepLabv3+ to 178 

recognizing composited material components from cluttered CW mixtures, which 179 

demonstrated the feasibility of semantic segmentation in distinguishing highly unstructured 180 

materials in mixtures states. However, its precision is still not sufficiently high for practical 181 

applications in CWM, primarily because the deficiency in boundary detection. To enable 182 

fine-grained composition recognition for CW mixtures, a boundary-aware semantic 183 

segmentation model is required that can depict edges among different waste materials. Such 184 

boundary-aware precise waste segmentation can potentially be achieved by Transformer, a 185 

DL framework that is gaining momentum in the field of computer vision.  186 

 187 

2.3. Attention mechanism and Transformers 188 

Transformer is proposed first for NLP (Vaswani et al., 2017). It is a deep learning model 189 

different from CNN and recurrent neural network (RNN), and has achieved remarkable 190 

performance in a number of NLP tasks such as machine translation (Takase and Kiyono, 191 

2021) and language modelling (Brown et al., 2020). A transformer encoder is mainly 192 



 

6 

 

consisted by self-attention layers for feature extraction, and Feed Forward Neural Networks 193 

(FFN) for spatial transformation. 194 

 195 

The Self-attention layer serves as the primary feature extractor, which creates three tensors: 196 

query tensor (Q), key tensor (K) and value tensor (V) to consider the internal correlation of the 197 

input tensor, and calculate the embedded features. The attention mechanism can be represented 198 

as Eq. (1): 199 

Attention(Q, K, V) = Softmax (
𝑄𝐾𝑇

√𝑑
) 𝑉                         (1) 200 

The Q should dot with K firstly, which indicates the score of correlation between each 201 

element. Division and Softmax normalization operation are used to keep the gradient stable 202 

(d is the dimension of Q and K). The softmaxed tensor is finally multiplied with V to 203 

calculate the weighted output. 204 

 205 

In recent years, Transformer is widely used in many computer vision tasks. ViT clips images 206 

into flatten patches sequence, which is used as the input of Transformer model (Dosovitskiy 207 

et al., 2020). DETR is a Transformer-based end-to-end object detection network, which has 208 

advantages of anchor-free and NMS-free. The method significantly outperforms competitive 209 

baselines (Carion et al., 2020). Image GPT directly reshapes two-dimensional images into 210 

one-dimensional as model input, which are used for training an image generation model in 211 

unsupervised way, thus Transformer is used in pixel prediction task (Chen et al., 2020); 212 

SegFormer combined a hierarchical Transformer encoder and a lightweight decoder, and has 213 

achieved a considerable performance in image segmentation task (Xie et al., 2021). However, 214 

little research, if any, has applied advanced Transformer models in CW-related visual 215 

recognition tasks. 216 

 217 

In our work, a Transformer-based image segmentation framework is proposed to tackle the 218 

challenging CW composition recognition task. The proposed framework uses a typical 219 

encoder-decoder structure. The encoder uses the self-attention mechanism, where the query, 220 

key and value tensors are generated with the same embedding. The decoder, on the other 221 

hand, uses the cross-attention mechanism, where the query tensor, and key and value tensors 222 

are generated by different embeddings.  223 

 224 

3. The proposed boundary-aware transformer model 225 

This research proposed a boundary-aware Transformer framework for fine-grained recognition 226 

of construction waste based on semantic segmentation. The framework includes three mutually 227 

interconnected steps: First, a dataset of mixed construction wastes is preprocessed to clarify 228 

waste boundary pixels from the background; Second, a Transformer-based model, which 229 

comprises a self-attention encoder module and a cascade decoder, is trained on the dataset for 230 

CW semantic segmentation; Finally, the segmentation results provided by the Transformer 231 
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model are improved by a deep learning-based boundary refinement scheme.  232 

 233 

3.1 Preprocessing the waste annotations  234 

This study is based on a dataset collected and prepared by Lu et al. (2021), which includes 235 

5,366 photos of highly cluttered CW mixtures. The dataset comprises seven types of CW (i.e., 236 

rock, gravel, earth, packaging, wood, other non-inert, and mixed) and two types of relevant 237 

objects (i.e., grip and truck). Annotating such a large CW dataset is challenging as different 238 

waste materials are usually intertwined with each other, and the boundaries wherein can be 239 

vague. As a result, the annotators tend to leave the ambiguous boundaries between different 240 

waste categories as an unlabeled background, which is imprecise and can undermine the 241 

performance of the segmentation model. To overcome the adverse impact of mislabeled 242 

boundary, a morphology-based preprocessing method is used to distinguish pixels of 243 

“background” from the “ignore” category. Erosion operation is implemented to process the 244 

background category, which can remove pixels at the edge of waste objects. After processing, 245 

the pixels between different categories are removed from the background. As the ground-truth 246 

labels of those pixels are unknown, they are treated as the "ignore" category in the training 247 

process. This means that during the training process, the predicted probability distribution of 248 

those pixels has no influence on loss calculation and gradient backward broadcast. 249 

 250 

Fig. 1. Schematic diagram showing how original annotations are preprocessed.  251 

 252 

The preprocessing workflow is illustrated in Fig. 1, where (a) and (c) are the original ground 253 

truth while (b) and (d) are the corresponding processed labels. In Fig. 1 (a) and (c), black pixels 254 

refer to the “background” category, but there are also some pixels in object boundary are 255 

mislabeled as background. In (b) and (d), the morphology operation is used to distinguish 256 

boundary pixels from the background, where the green pixels represent the background, and 257 

black pixels represent the “ignore” category. 258 

 259 

3.2 Transformer-based semantic segmentation 260 

In this research, a Transformer-based semantic segmentation framework is proposed to explore 261 

the potential of Transformer in construction waste composition recognition. The mix 262 

transformer encoder (MiT) in Segformer (Xie et al., 2021) is integrated to apply the global 263 

attention mechanism in the proposed framework. A decoder based on multilayer perceptron 264 

(MLP) and object-contextual representation (OCR) is proposed and integrated into the 265 

proposed Transformer-based semantic segmentation framework. A cross-attention module is 266 

used in the decoder to predict the semantic category of each pixel more precisely based on the 267 

enhanced feature representation. 268 



 

8 

 

 269 

 270 

Fig. 2. The proposed Transformer-based framework for construction waste semantic 271 

segmentation. FFN and MLP stand for feed-forward network and multilayer perceptron, 272 

respectively. 273 

 274 

Fig. 2 shows the architecture of the proposed Transformer-based semantic segmentation 275 

framework. The encoder contains 4 stages. In each stage, feature tensors are first embedded to 276 

token, then they are sent as the input of the Transformer encoder, which includes 𝑁1, 𝑁2, 𝑁3 277 

and 𝑁4 stacked encoder block respectively. Each encoder block has a self-attention module, 278 

followed by a feed-forward network (FFN). The decoder has a cascade structure, where the 279 

embedded features output by each stage of the encoder are first upsampled and concatenated 280 

together in the Concat layer (the pink rectangle in Fig. 2), then processed by MLP layer 281 

(identified by blue rectangle in Fig. 2), and finally handled by OCR module (identified by green 282 

rectangles in decoder part of Fig. 2) to better consider representation of corresponding object 283 

class. 284 

 285 

3.2.1 Hierarchical Transformer encoder 286 

The input image tensor of size (B × H × W × C) should be embedded to vector sequence with 287 

size (B × N × C𝑒𝑚𝑏𝑒𝑑), then it can be used as theinput of the Transformer block in each stage. 288 

B is the batch size, and H and W represent the height and width of the image, respectively. 289 

Similar to Transformer structures used in NLP, N can be seen as the length of a sequence, and 290 

C𝑒𝑚𝑏𝑒𝑑 is the dimension of embedding. While most of existing vision Transformer models 291 

(Dosovitskiy et al., 2020) crop and reshape the input image tensor to a sequence of flattened 292 

token embedding to handle 2D images in Transformer, the proposed Transformer framework 293 

uses a different approach introduced by MiT (Xie et al., 2021). To be more specific, an 294 

overlapped embedding scheme is used to consider the continuity of adjacent patches better. 2D 295 

convolution is used to project the overlapped patches to embedding, and then the embedded 296 

features are flattened and normalized to generate the embedded token. 297 

 298 

We used an efficient self-attention module in MiT as the main feature extractor instead of CNN. 299 

There is generally an overall self-attention map (Fu et al., 2019) with size (B × N × N) in the 300 

self-attention module, where N is the sequence length and N = H × W . The calculation 301 
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process of overall self-attention map is compute-intensive and requires large storage resources, 302 

easily becoming a network bottleneck. Therefore, reduction ratio R is introduced to reduce the 303 

size of overall self-attention map to (B × N N 𝑅2⁄ ).  304 

Attention(Q, K, V) = Softmax (
𝑄𝐾𝑇

√𝐶
) 𝑉                       (2) 305 

In Eq. (2), Q, K and V refer to query tensor, key tensor and value tensor respectively, they are 306 

calculated from input feature map. The shape of Q is (B × N × C), and the shape of K, V is 307 

(B × N 𝑅2⁄ × C), where C is the channel length of input tensor.  308 

 309 

Each self-attention module is connected to a feed-forward network (FFN), which consists of a 310 

convolutional layer, two fully connected layers, and an activation function. The FFN module 311 

can introduce more non-linear spatial transformations into the model, thereby enhancing the 312 

model's performance. FFN is widely used in various Transformer-based models (Vaswani et 313 

al., 2017). 314 

 315 

3.2.2 MLP-OCR Cascade decoder 316 

A lightweight multilayer perceptron(MLP) used in Segformer (Xie et al., 2021) is selected as 317 

the first stage decoder in the proposed method. Eq. (3) to Eq. (6) illustrates the calculation 318 

process of MLP. 𝐿𝑖𝑛𝑒𝑎𝑟  is the fully connection layer (FC), we can see that MLP is 319 

implemented by FC → Upsample → FC → FC, Where 𝐹𝑖 refers to embedded feature from i-320 

th stage, the channel size is transformed from 𝐶𝑖 to 𝐶.  321 

 322 

𝐹̂𝑖 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝐶𝑖, 𝐶)(𝐹𝑖), ∀𝑖                              (3) 323 

𝐹̂𝑖 = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 (
𝐻

4
×

𝑊

4
) (𝐹̂𝑖), ∀𝑖                           (4) 324 

F = Linear(4C, C) (𝐶𝑜𝑛𝑐𝑎𝑡(𝐹̂𝑖)) , ∀𝑖                         (5) 325 

M = Linear(𝐶, 𝑁𝑐𝑙𝑠)(𝐹)                              (6) 326 

 327 

An Object-Contextual Representation module (Yuan et al., 2021b) is used in the decoder to 328 

enhance its ability to predict the semantic category and feature representation of each pixel. 329 

The OCR comprises three parts: object representation block, object contextual block and 330 

feature augmentation. 331 

 332 

The object representation block multiplies pixel representation (extracted from backbone 333 

network) and categories probability map to obtain a context matrix that characterizes the 334 

similarity between object features and each category. The formula is shown as Eq. (7): 335 

𝑓𝑘 = ∑ 𝑚̃𝑘𝑖𝑥𝑖𝑖∈ℒ                                 (7) 336 

Where ℒ refers to pixels in an image, 𝑥𝑖 represents the feature of i-th pixel, 𝑚̃𝑘𝑖 refers to the 337 

probability of i-th pixel belong to k-th category. 338 

 339 



 

10 

 

The object contextual block utilizes a cross-attention module similar to (Wang et al., 2018), 340 

which calculates a relation matrix between pixel representation and context matrix generated 341 

from object region block, then weight the original pixel representation, the formula is shown 342 

as Eq. (2), which is similar to the self-attention module used in MiT, but the calculation of this 343 

cross-attention is different: while the query, key and value tensors in MiT are generated with 344 

the same embedding (thus is called self-attention), the query tensor in OCR is generated from 345 

the context matrix, and the key and value sensors are generated from image features (thus is 346 

called cross-attention). 347 

  348 

The last step concatenates the outputs of object contextual block and original embedding to get 349 

the augmented representation: 350 

𝑧𝑖 = 𝑔([𝑥𝑖
𝑇 𝑦𝑖

𝑇]𝑇)                                (8) 351 

In Eq. (8), 𝑔(∙)  refers to a non-linear transform, 𝑥𝑖  and 𝑦𝑖  refer to embedding generated 352 

from encoder and object contextual block. Splicing OCR with the feature representation of the 353 

deepest input of the network as the context information enhanced feature representation which 354 

is called feature argumentation in OCR, the semantic category of each pixel can be predicted 355 

based on the enhanced feature representation more precisely. 356 

 357 

3.3. Boundary refinement 358 

SegFix is used to refine the prediction results, focusing particularly on edge pixels at waste 359 

boundaries (Yuan et al., 2020). SegFix is a deep learning-based image segmentation post-360 

processing scheme compatible with different models for segmentation refinement. SegFix uses 361 

a fine-designed object direction map as ground truth for model training to obtain an offset map. 362 

HRNet (Sun et al., 2019) is used in the proposed method as the backbone of the SegFix. Two 363 

branches are designed to learn the offset from the boundary, i.e., a boundary branch and a 364 

direction branch. The boundary branch learns a probability map 𝐵𝑏𝑜𝑢𝑛𝑑𝑟𝑦  with size 365 

(𝐻 × 𝑊 × 1), where H and W are the height and width of an image, respectively, and each 366 

element in 𝐵𝑏𝑜𝑢𝑛𝑑𝑟𝑦 refers to the probability of a pixel belong to designated boundary The 367 

direction branch learns a direction map 𝐵𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  with size (𝐻 × 𝑊 × 2) , of which an 368 

element 𝑏𝑖𝑗 represents the direction of the pixel 𝑝𝑖𝑗 away from the edge. The value of 𝑏𝑖𝑗 is 369 

discretized, and equals on the following: (1,0) , (−1,0) , (0,1) , (1,1) , (−1,1) , (1, −1) , 370 

(−1, −1) and (0, −1). 371 

 372 

Fig. 3. The general procedure on how Segifx predicts edge and direction maps.  373 

 374 

Fig. 3 illustrates the label generation procedure of SegFix. Distance map (c) and direction map 375 
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(d) are used as the supervision of boundary branch and direction branch accordingly. The binary 376 

map (b) of a single category are extracted firstly, then a distance transform implemented by 377 

SciPy (Virtanen et al., 2020) is used to calculate the distance map (c), lastly, Sobel filter (Sobel, 378 

2014) is used to calculate the direction map (d). 379 

 380 

 381 

Fig. 4. (a) Corresponding relationship between direction and offset values; (b) Structure of the 382 

SegFix framework. 383 

 384 

Fig. 4 (a) Illustrates the corresponding relationship between direction and offset value, where 385 

eight directions are encoded into a vector for the convenience of proceeding. Fig. 4 (b) is the 386 

framework of SegFix, which first uses a segmentation backbone to get the embedded feature 387 

map of input image, then sends the embedded feature to two different branch to predict the 388 

distance map and direction map respectively, and finally process the two maps to generate an 389 

offset map for inference. The binary cross-entropy loss is used in boundary loss and direction 390 

loss. HRNet (Sun et al., 2019) is used as the backbone. 391 

 392 

The predicted offset map is used to refine the segmentation map generated by the previous 393 

Transformer framework. For each element 𝑠𝑖𝑗  in segmentation map, offset it with stride d 394 

along direction 𝑏𝑖𝑗 predicted from SegFix to 𝑠𝑖′𝑗′ , and sample the new category in position 395 

𝑠𝑖′𝑗′   as the refined segmentation map. SegFix can use edge information to refine the 396 

segmentation map, thereby improving the proposed method's ability to process object edge. 397 

 398 

4. Implementation and results 399 

4.1 Dataset, implementation details and baseline 400 

The dataset in this research is collected from waste disposal facilities in Hong Kong. There are 401 

5,366 images in this dataset, each with a manually-annotated segmentation label. The dataset 402 

is randomly split to  train set,  validation set and  test set according to the ratio of 7:1.5:1.5.  403 

 404 

Experiments are conducted in a computing server with Ubuntu 18.04 system and NVIDIA 405 

A100-SXM4-40GB GPU, and a Python-based deep learning framework PyTorch is used in the 406 

implementation of deep learning network architecture. Several data augmentation schemes are 407 

used in image segmentation, including random crop and flip, and normalization. For the 408 

training of the Transformer-based segmentation model, AdamW (Loshchilov and Hutter, 2017) 409 



 

12 

 

is used as optimizer, the cross-entropy loss is used as loss function, and the max iteration is set 410 

as 160,000. To train the SegFix, HRNet-18 (Sun et al., 2019) is used as the backbone, and 411 

binary cross-entropy loss is used as boundary loss and direction loss. The used training strategy 412 

is stochastic gradient descent (SGD), and the learning rate and max iteration are set as 0.004 413 

and 80,000, respectively.  414 

 415 

MIoU and MAcc is used as evaluation metrics. MIoU is a widely used evaluation metrics in 416 

semantic segmentation tasks, which is defined as the mean intersection over union (IoU) of all 417 

categories in the dataset: 418 

MIoU =
1

𝑘
∑ (𝑝𝑖𝑖 (∑ 𝑝𝑖𝑗 + ∑ 𝑝𝑗𝑖

𝑘
𝑗=1

𝑘
𝑗=1 − 𝑝𝑖𝑖)⁄ )𝑘

𝑖=1                     (9) 419 

Where, 𝑝𝑖𝑗  indicates the number of pixels for which the ground truth belongs to the i-th 420 

category, and for which the predicted value belongs to the j-th category. k is the total number 421 

of categories. 422 

 423 

MAcc refers to the mean accuracy, which is the average of segmentation accuracy across all 424 

categories: 425 

MAcc =
1

𝑘
∑ (𝑝𝑖𝑖 ∑ 𝑝𝑖𝑗

𝑘
𝑗=1⁄ )𝑘

𝑖=1                             (10) 426 

Where, 𝑝𝑖𝑗 is the number of pixels that belong to i-th category in the ground truth, and also 427 

be predicted as j-th category, k is the number of category in the dataset. 428 

 429 

A highly optimized DeepLab V3+ proposed in (Lu et al., 2021) is used as the baseline. There 430 

are nine categories and background in the dataset, and the IoU and Acc of each category are 431 

shown in Table 1. The MIoU and MAcc is 56.2% and 69.19% accordingly. 432 

 433 

Table 1. Performance of baseline. 434 

 background rock gravel earth packaging wood others mixed grip truck overall 

MIoU 97.1% 38.2% 37.3% 37.5% 52% 66.2% 35% 38.6% 87.7% 72.9% 56.2% 

MAcc 98% 48% 53% 51% 71% 84% 45% 60% 95% 87% 69.19% 

 435 

4.2 Ablation experiments 436 

A group of experiments is designed to analyze influences of the four different modules in the 437 

proposed framework, i.e., preprocessing, encoder, decoder and post-processing. Whether the 438 

respective module is applied or what options are used in the modules will have an influence on 439 

the final performance. In this section, such effects are comprehensively investigated by 440 

comparing the MIoU and MAcc metrics. 441 

 442 

Table 2 illustrates the experiment result, where different methods are distinguished by different 443 

index. For preprocessing, method #1 to method #3 use the original dataset for training, and 444 

method #4 to method #6 use the preprocessed dataset. For the encoder, method #1 to method 445 

#3 use MiT-B0, MiT-B2 and MiT-B5 respectively to explore the influence of different encoders. 446 
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For decoder, method #1 to method #4 use MLP as decoder, whereas method #5 and method #6 447 

use the proposed MLP-OCR as decoder. Method #6 has applied SegFix post-processing, while 448 

the others have not 449 

 450 

Table 2. Results of ablation experiments. 451 

Method Preprocessing Encoder Decoder Post-processing MIoU MAcc 

#1  MiT-B0 MLP  53.36% 67.92% 

#2  MiT-B2 MLP  56.02% 70.38% 

#3  MiT-B5 MLP  56.9% 70.26% 

#4  MiT-B5 MLP  60.58% 72.04% 

#5  MiT-B5 MLP-OCR  61.45% 72.64% 

#6  MiT-B5 MLP-OCR SegFix 61.68% 72.84% 

 452 

4.2.1 Influence of preprocessing 453 

A similar network structure is used in this section to compare the influence of preprocessing 454 

procedure. The network use MiT-B5 as encoder and MLP as decoder, method #3 and method 455 

#4 is trained on the original dataset and the preprocessed dataset accordingly, the 456 

hyperparameter is set as the same, and they can all converge under this set of parameters. 457 

Evaluation results are shown in Table 2, line 3 and line 4 shows the evaluation metrics, the 458 

MIoU is 56.9% in method #3, and it has an improvement of 3.68%, in method #4, which is 459 

60.58%. The MAcc of method #3 and method #4 is 70.26% and 72.04% accordingly, it is 460 

shown an improvement of 1.78%. In this comparison experiment we can see that the 461 

preprocessing procedure can improve the performance of Transformer network. 462 

 463 

4.2.2 Influence of different MiT variants (encoders) 464 

The MiT encoder has several different variants: MiT-B0 to MiT-B5. They follows the same 465 

structure but uses different parameters such as the number of Transformer blocks in each stage. 466 

Among the variants, MiT-B0 is the most lightweight whereas MiT-B5 has the largest number 467 

of parameters. Therefore MiT-B5 tends to perform better in segmentation accuracy while MiT-468 

B0 has greater inference speed. Table 3 illustrates the parameter used in the different variants 469 

of MiT: 470 

 471 

Table 3. Model parameters of different MiT encoder variants. 472 

MiT encoder Stage #1 Stage #2 Stage #3 Stage #4 
Num. of 

Params 

MiT-B0 2/32 2/64 2/160 2/256 3.4M 

MiT-B1 2/64 2/128 2/320 2/512 13.1M 

MiT-B2 3/64 4/128 6/320 3/512 24.2M 

MiT-B2 3/64 4/128 18/320 3/512 44.0M 

MiT-B4 3/64 8/128 27/320 3/512 60.8M 

MiT-B5 3/64 6/128 40/320 3/512 81.4M 
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* The fractions from column 2 to column 5 represent “stack number/length” 

 473 

The size of MiT encoder is mainly influenced by two parameters: the stack numbers of 474 

Transformer in each stage and the vector length of embedded patch in each stage. The larger 475 

the parameters, the larger the size of the model and the more parameters. Table 3 shows details 476 

of the two parameters, and the number of parameters of each model. MiT-B0, MiT-B2 and MiT-477 

B5 are selected for the comparison of performance. Table 2 lists the evaluation results of 478 

methods using different encoder. Method #1, #2, and #3 used MiT-B0 , MiT-B2, and MiT-B5 479 

as encoders, respectively. Other parameters, including training hyper parameters and model 480 

configuration parameters, of the three methods are kept the same to allow direct performance 481 

comparison.  482 

 483 

As shown in Table 2, MIoU and MAcc of the methods changed with the variation of the model 484 

size. The more parameters of the model, the better the performance. TheMIoU of the three 485 

methods are 53.36%, 56.02% and 56.9% respectively, and the MAcc are 67.92%, 70.38% and 486 

70.26% respectively. The results indicate that models with a larger number of parameters tend 487 

to have the better performance. Therefore, the MiT-B5 encoder is selected as the encoder of 488 

the proposed TransFormer-based framework. 489 

 490 

4.2.3 Influence of different decoders 491 

Two different decoder structures, i.e., the MLP decoder and the proposed MLP-OCR decoder, 492 

are used in the ablation experiments respectively. In the experiment, method #4 uses MiT-B5 493 

as its encoder and MLP as its decoder, whereas method #5 uses MiT-B5 and MLP-OCR as its 494 

encoder and decoder, respectively. In SegFormer, MLP is the default decoder, which has a 495 

lightweight structure to avoid the side influence of hand-crafted components. In our method, a 496 

MLP-OCR structure is proposed and used as the decoder in the TransFormer-based framework, 497 

so as to improve the feature representation ability. 498 

 499 

The resulted performance is shown in row 4 and row 5 in Table 2. The MIoU of method #4 and 500 

method #5 are 60.58% and 61.45%, respectively; the MAcc, on the other hand, are, respectively, 501 

72.04% and 72.64%. As the result shows, compared with the simple MLP decoder, MLP-OCR 502 

decoder can lead to higher segmentation precision. 503 

 504 

4.2.4 Influence of SegFix 505 

SegFix is used as a post-processing scheme to refine the predicted label. In this section, the 506 

effectiveness of SegFix is evaluated by comparing the SegFix refinement result (method #6) 507 

with the original results predicted by method #5. The evaluation metrics is shown in row 5 and 508 

row 6 in table 2. We can find that, after refinement, the MIoU and MAcc are improved by 0.23% 509 

and 0.20%, respectively. To visualize the refinement details, three patches are clipped from the 510 

test set and shown in Fig. 5. SegFix can learn an offset map from the original images, and there 511 
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are eight different directions in the offset map, indicating how the predicted labels should be 512 

refined. In Fig. 5, the arrows represent the directions of offset, and offset distance is set to 2 513 

pixels. For example, an arrow point to the right side in Fig. 5 means that using the current pixel 514 

as source position, shift 2 pixels’ distance, and use the category in the new position to refine 515 

the category in the source position. Fig. 5 uses different colors of arrows to distinguish the 516 

actual effects exerted by SegFix: the yellow arrow indicates the corresponding position was 517 

originally assigned a wrong label but rectified by SegFix; the pink arrow, on the other hand, 518 

indicates the position has a correct label initially, but was changed to a wrong label by SegFix. 519 

And the blue one indicates those pixels that have not been changed. It is observed that SegFix 520 

can effectively refine the boundary pixels and improve the segmentation performance. 521 

 522 

 523 

Fig. 5. Refinement by SegFix. 524 

 525 

Fig. 6 show the difference of boundary detection ability of the proposed segmentation 526 

framework and the SegFix post processing method. Three samples are selected for illustration. 527 

In Fig. 7, (a), (b) and (c) are the ground truth of three selected samples, (d), (e) and (f) are the 528 

corresponding stacked predicted results of the proposed segmentation framework and the 529 

SegFix post processing method. In (d), (e) and (f), white pixels refer to the boundary prediction 530 

result of SegFix, while other colors refer to the original predicted categories without applying 531 

SegFix. 532 

 533 

From Fig. 6, we can see that SegFix can better grasp the boundary information in images. This 534 

is because SegFix use direction map and distance map as supervision condition, which includes 535 

richer edge information compared with normal segmentation ground truth. The results 536 

demonstrate SegFix is effective in refining the prediction results generated by image 537 

segmentation model.  538 

 539 



 

16 

 

 540 

Fig. 6. Examples showing the effects of Segfix: The second row is the predicted results with 541 

SegFix applied, and the first row is the corresponding ground truth. 542 

 543 

4.3 Performance comparison 544 

Several classical CNN-based models were trained on the same dataset to compare their results 545 

with our the BAT framework. The trained CNN models include FCN (Long et al., 2015), 546 

DANet (Fu et al., 2019), DeepLab V3+ (Chen et al., 2018) and HRNet (Sun et al., 2019). FCN 547 

is a representative deep learning work applied in image segmentation. It is an end-to-end image 548 

segmentation method that allows the network to make pixel-level predictions. ResNet-50 is 549 

used as the backbone network of the FCN. DANet is a typical network which combined CNN 550 

architecture with attention module. It proposed two attention modules to further improve the 551 

feature representation of segmentation network. The DeepLab series have the advantages of 552 

fast and high performance, and thus are widely used in various datasets. In (Lu et al., 2021), a 553 

DeepLab V3+ model was trained and calibrated via orthogonal experiments for CW 554 

segmentation on the same dataset; thus, it will be considered as the baseline in this study. 555 

HRNet maintains high-resolution representations by connecting high-resolution to low-556 

resolution convolutions in parallel, which has achieved state-of-the-art performance in several 557 

tasks. In the comparison, a variant HRNet-48 is used for comparison. Same training schedule 558 

is used in training process: SGD is used as optimizer; max training iteration is set to 80,000. 559 

MIoU and MAcc is used as evaluation metrics, the evaluation results are shown in Table 4.  560 

 561 

Table 4. Performance of different semantic segmentation methods. 562 

Method MIoU MAcc 

FCN 45.72% 56.58% 

DANet 49.66% 62.17% 

DeepLabV3+ (baseline) 56.2% 69.19% 

HRNet 52.05% 64.4% 

Ours (BAT) 61.68% 72.84% 

 563 

4.4 Discussion 564 

4.4.1 Comparison with baseline 565 
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As listed in Table 4, the BAT surpassed the baseline obtained by DeepLab v3+ in terms of both 566 

MIoU and MAcc. The level of improvement reaches 9.8% and 5.3%, respectively. Some 567 

examples are selected to intuitively illustrate the improvement. Five examples are shown in 568 

Fig. 7, where column (a)  to (d) are the original image, the ground truth, the segmentation 569 

result of the baseline method, and results provided by our BAT method. In (b), green refers to 570 

the background category, and black refers to the ignore category. Suppose a pixel belongs to 571 

ignore category in the ground truth. In that case, its predicted value will be not used to calculate 572 

loss and evaluation matric, thus it can be predicted as any other categories according to their 573 

embedded feature and contextual information, and the predicted result (c) and (d) will not 574 

include the ignore category. It is observed that while the baseline method performed poorly in 575 

distinguishing the object boundary, and the proposed BAT method has successfully recognized 576 

the minor details and edges among the waste materials. For example, in (1), the left area 577 

contains several categories, which are packed in a small area. The baseline method failed to 578 

effectively process this area, with many pixels at the boundary and corners misclassified as 579 

background. As a comparison, the proposed BAT method can distinguish them better. In 580 

addition, the proposed method has a more robust performance on recognizing the waste 581 

categories in images. In (2), the center area belongs to the “rock” category, which has been 582 

correctly identified by the proposed method, but mislabeled as the “earth” category by the 583 

baseline method. 584 

 585 

Fig. 7. Examples of segmentation results. 586 

 587 

4.4.2 Analysis of erroneous cases 588 

Some erroneous cases are examined in this section. As detailed in section 4.3 the MIoU of the 589 

proposed method is 61.68%. MIoUPrediction results of three selected samples and their 590 
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corresponding ground truth are shown in Fig. 8, of which overall IoU and the IoU for each 591 

categorie are listed in Table 5. As shown in Fig. 8, (d), (e) and (f) are the predicted label, (a), 592 

(b) and (c) are the corresponding ground truth. Those examples are represented as #1, #2 and 593 

#3. While the overall MIoU for #3 (67.16%) exceeds the average value of 61.68%, those for 594 

MIoU#1 and #2 (56.51% and 50.88%, respectively) are below the bar. We can see that the 595 

proposed method has a better performance for some majority categories such as grip or truck, 596 

for which the proposed BAT method can predict their shapes and boundaries more accurately. 597 

For some minority categories, the corresponding pixel areas have not been predicted well. For 598 

example, pixels belong to the “wood” category only take up 0.83% in the entire image of #3, 599 

which is a minority category. In #3, the IoU of the “wood” category is only 12.76%, and since 600 

the MIoU is defined as the average of IoU over all categories, the low IoU of several categories 601 

(e.g., the “wood” category in image #3) can significantly undermine the final result For some 602 

categories with fewer pixels, if no pixels are predicted to be in this category, the IoU is 0, which 603 

will have a greater impact on MIoU. For example, packaging category in #1, the pixel ratio is 604 

0.28%, and the category IoU is 0. The category imbalance problem degrades the model 605 

performance. Although this research has tryed several techniques (e.g.,weighted cross-entropy 606 

loss (Aurelio et al., 2019), focal loss (Lin et al., 2017) or over-sampling ) to deal with the 607 

problem, further research is still required to better handle its negative effects.  608 

 609 

 610 

Fig. 8. Examples showing unsatisfied prediction results. 611 

 612 

Table 5. The IoU of each category. The "/ " means that no pixels fall into this category in 613 

ground truth. 614 

 background rock gravel earth packaging wood others mixed grip truck total 

Palette            

#1 99.79 0 / / 0 39.86 0 67.1 97.28 91.52 56.51 

#2 99.48 / / / 0 53.78 11.07 0 96.38 95.46 50.88 

#3 99.99 / / / 67.44 12.76 0 96.29 97.94 95.67 67.16 

 615 

5. Conclusions 616 

Precise composition information is a prerequisite of effective construction waste 617 

management. Semantic segmentation, a computer vision subtask, has been used to 618 

automatically recognize material composition of construction waste mixtures from images. 619 
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However, the performance of previous research methods is not sufficient for practical 620 

engineering applications. This study proposed a boundary-aware Transformer (BAT) 621 

framework for fine-grained composition recognition of construction waste mixture. The 622 

model first applies morphology operation to distinguish the background and boundary; a 623 

Transformer-based semantic segmentation method is proposed to segment construction 624 

waste; finally, a deep learning-based boundary refinement scheme is used to refineboundaries 625 

of the segmentation results. Comprehensive ablation experiments were implemented to 626 

investigate the effects of different modules of the BAT model. It was found that all of the 627 

proposed modules have contributed positively to the improvements in performance. The 628 

optimal performance of our framework was compared with that of other state-of-the-art 629 

segmentation models. The MIoUof the proposed method is 61.68%, which is 9.8% higher 630 

than the baseline. The results demonstrate the effectiveness of the BAT model in improving 631 

the performance of construction waste image segmentation. 632 

 633 

In future research, the problem of category imbalance should be further researched for better 634 

performance. The proportion of each category can be balanced through some technical 635 

solutions. For example, re-collecting data to narrow the gap between the majority category 636 

and the minority category. In addition, it might be viable to crop the images to patches, from 637 

which patches of the rare categories can be over-sampled to balance the dataset. Improving 638 

the image quality by updating the camera also has potential to improve the performance, 639 

since images with higher resolution can distinguish the category boundaries better, and more 640 

details of CW can be preserved in the images.  641 
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