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Abstract 9 

The last decade has witnessed a plethora of studies on the applications of computer vision 10 

(CV) in structural health monitoring (SHM). While the research effort has been primarily 11 

focused on detecting surface defects from 2D images (known as defect detection), increasing 12 

studies are tapping into reconstructing the defects in 3D (called defect modeling). It remains 13 

unclear whether the shifting focus suggests a resolution of the defect detection problem, and 14 

thus constitutes a systematic transition. This article aims to answer the questions by 15 

conducting a critical review of CV-based SHM. It is found that the turning of limelight to 16 

defect modeling coincides with the proliferation of deep learning (DL) in defect detection. 17 

The shift is a structural change driven by (a) collective advancements of external 18 

technologies such as big data, computing power and algorithms, and (b) inherent need of the 19 

SHM discipline to strive for a data-enriched and evidence-based transformation. However, it 20 

does not mean a resolution of defect detection, but poses higher requirements on its 21 

performance in realistic settings (e.g., complex background and instance differentiation). A 22 

roadmap is proposed to synergize future defect detection/modeling research from five aspects, 23 

i.e., instance segmentation in context, 3D reconstruction, geometric modeling, semantic 24 

modeling, and formal representation. A case study was performed to demonstrate preliminary 25 

implementation of the roadmap. The research contributes to understanding the rapidly 26 

evolving landscape of CV-based SHM, and laying out an overarching framework to guide 27 

future research.  28 
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Defect detection; Defect modeling; Damage information modeling.  30 

 31 

1. Introduction 32 

Structural health monitoring (SHM) plays a critical role in maintaining the serviceability of 33 

man-made structures (Farrar and Worden, 2007). It originated from the field of mechanical 34 

and aerospace engineering, and was gradually adopted for civil infrastructure monitoring in 35 

1980s (Farrar and Worden, 2007). Technically speaking, inspection and monitoring are 36 

considered two different subjects with different space-time resolution — the former is sparse 37 

in time but dense in space while the latter being totally the opposite (Spencer Jr et al., 2019). 38 

However, for the sake of comprehensiveness, this research does not make the distinction, and 39 

adopts the broadest possible definition that encompasses the both (Dong and Catbas, 2020; D. 40 

Feng and Feng, 2018). Computer vision (CV)-based SHM is a non-destructive testing (NDT) 41 

approach that does not require direct contact with the structure concerned (Park et al., 2007). 42 

Compared with other NDT techniques such ultrasonic analytics (Brownjohn, 2007; Park, et 43 

al., 2007; Su et al., 2023), it stands out for its cost-effectiveness and the ability to cover 44 

relatively large area with its wide field of view (Dong and Catbas, 2020). The promise of CV-45 

based SHM has been recognized as early as late 1990s. 46 

 47 

As a subfield of CV-based SHM, defect detection generally refers to the methodologies, 48 

process, and technologies employed for automatically identifying structural flaws from 49 

digital images. Although a consensus has not yet been reached regarding the initial research 50 

attempt, relevant studies began to emerge in the 1990s. (L. Abdel-Qader et al., 2003; Klassen 51 

and Swindall, 1993; Tanaka and Uematsu, 1998). Early research efforts concentrated on 52 

identifying image pixels that represented defects by directly applying image processing 53 

techniques (IPTs), such as edge detection (L. Abdel-Qader, et al., 2003) and Otsu 54 

thresholding (Pakrashi et al., 2010). Another line of work aimed to train machine learning 55 

(ML) models, e.g., support vector machines (SVM), with the IPT-extracted features to detect 56 

the defects more robustly (Junjie Chen and Liu, 2021). Either way, manual efforts are 57 

required to test a wide range of IPTs and handcraft defect-sensitive features (Guo et al., 2024; 58 

L. Zhang et al., 2016). Due to this labor-intensive process, practical deployment of CV in 59 

SHM has been limited.  60 

 61 

The situation was improved significantly with the resurgence of deep learning (DL). Unlike 62 

traditional approaches based on feature engineering, DL is an end-to-end model driven 63 

entirely by data (Koch et al., 2015; L. Zhang, et al., 2016). Given datasets of adequate size 64 

and diversity, a DL model such as a convolutional neural network (CNN) can automatically 65 
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learn defect-sensitive features from the data and apply them for defect detection (Y.-J. Cha et 66 

al., 2017). As these features are automatically learned, they are statistically more adaptable to 67 

data variations, and thus have better generalizability over different defect types captured in 68 

different environments. The advantages of DL and the resulting superior performance have 69 

led to a skyrocketing number of publications in the field of defect detection over the past 70 

decade (Dong and Catbas, 2020; Hsieh and Tsai, 2020). 71 

 72 

With the recent surge in defect detection performance, increasing attention is paid to a new 73 

territory in SHM called defect modeling (Artus and Koch, 2020a). Unlike the goal of defect 74 

detection to identify defects (typically from 2D images), defect modeling aims to reconstruct 75 

a digital representation of the defects (usually as 3D geometric models) (Artus and Koch, 76 

2020a; Artus and Koch, 2020b; Hüthwohl et al., 2018). The modeling results provide 77 

valuable information on the defect geometry (e.g., length, width, and area) and can enable the 78 

extraction of their semantic properties. The implication to the broad field of SHM is immense. 79 

As noted by Spencer Jr. et al. (2019), defects identified at a local level (i.e., 2D images) must 80 

be analyzed within a global context to comprehend their scale and size. Many review papers 81 

share similar opinions. For instance, Dong and Catbas (2020) emphasized the importance of 82 

3D defect information in assessing structural conditions and offered a review of the latest 83 

studies on defect 3D reconstruction. Zhang et al. (2022) envisioned the incorporation of 84 

defect information into finite element modeling (FEM), necessitating a 3D defect model. The 85 

growing interest in this emerging field gives rise to new research questions that require urgent 86 

attention: 87 

(a) Does the shifting interest indicate a resolution of the defect detection problem? 88 

(b) Is the current trend just a “a flash in the pan” or a systematic transition? 89 

(c) If it is a systematic shift, what are the structural forces that underpin this transition?  90 

 91 

In response to these research questions, this study presents a critical review of the latest 92 

developments in the field of CV-based SHM, with a focus on elucidating the nexus between 93 

the evolution of defect detection and defect modeling. The aim is to enhance our 94 

understanding of the transition from 2D detection to 3D modeling of defects and the driving 95 

forces behind it. Based on this understanding, a roadmap is proposed to outline the key 96 

aspects that future research should address to fully harness the potential of defect modeling.  97 

 98 

2. Taxonomy revisited: Defect detection versus defect modeling 99 

A cornucopia of terminologies has been generated in CV-based SHM. It would be beneficial 100 
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to first clarify some of the most frequent terminologies in the respective fields of defect 101 

detection and defect modeling.  102 

 103 

Formal definitions have not yet been established to differentiate between defect detection and 104 

its modeling. However, it is generally accepted that defect detection involves identifying 105 

defects from specific measurements of a concerned structure. While the definition itself does 106 

not imply any dimensionality, 2D images have been the most common form of measurement, 107 

and as a result, detection methods are primarily 2D. Numerous methods have been developed 108 

for this purpose, and depending on the granularity of their output, they can be broadly 109 

categorized into four clusters, as illustrated in Fig. 1. Image classification represents the 110 

coarsest level of granularity, as it can determine whether a given image contains defects and, 111 

if so, the types of defects present. However, the output results provide limited information on 112 

either semantic (e.g., specific defect types) or geometric (e.g., position, shape, and 113 

morphology on images) aspects. Object detection surpasses image classification in terms of 114 

geometric granularity, as it not only identifies the presence of defects in an image but also 115 

indicates their position and aspect ratio using bounding boxes. Nevertheless, object detection 116 

cannot provide information about defect geometric shapes and appearances. Conversely, 117 

semantic segmentation can decipher specific semantic types of multiple defects and thus lies 118 

a step further along the semantic granularity continuum. However, it cannot differentiate 119 

instances of the same defect type. The two continuums converge at instance segmentation, 120 

which achieves the finest level of granularity in both aspects. It can not only distinguish 121 

defect instances and their semantic types but also extract defect geometry at a pixel level. 122 
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Fig. 1. Terminologies of 

widely used defect detection 

methods.  

 123 

 

Fig. 2. Relationship of defect modeling 

terminologies. 

 124 

Defect modeling aims to create an abstract representation of the identified defects. Since 125 

defects occur in 3D physical space, the preferred form of abstraction is also 3D. A defect 126 

modeling process consists of several activities, as illustrated in Fig. 2. An emerging area of 127 

interest is defect information modeling, also known as damage information modeling (DIM) 128 

(Artus and Koch, 2020b). As the name implies, DIM combines defect modeling and 129 
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information modeling, involving the organization and representation of information related to 130 

defects. DIM comprises two main tasks: geometric modeling and semantic modeling. Defect 131 

geometric modeling concentrates on generating 3D digital models that replicate the geometry 132 

of defects in the physical world. Prior to geometric modeling, a process called defect 3D 133 

reconstruction is required to convert defects detected from 2D image sequences into points in 134 

3D space. Intermediate or final outputs of 3D reconstruction and geometric modeling can 135 

take various forms, such as point clouds, defect point clouds (DPC) (Junjie Chen et al., 2023), 136 

mesh, boundary representation (BREP), and constructive solid geometry (CSG). Table 1 137 

provides a summary of these terms. Defect semantic modeling, on the other hand, focuses on 138 

compiling a range of defect properties (types, ratings, etc.) and providing a structured digital 139 

representation. The resulting semantic models can also take various forms, from the most 140 

general linked data models to domain-specific industry foundation classes (IFC), as outlined 141 

in Table 2. 142 

 143 

Table 1. Possible forms of defect geometric models. 144 

Geometric forms Definition 

Point cloud A discrete set of data points in space, which may represent a 3D shape or object. 

Defect point cloud A cluster of point cloud that represent structural defects. 

Mesh A digital representation of a 3D object or surface 

Boundary representation A method for representing a 3D shape by defining the limits of its volume. 

Constructive solid geometry 
A method for representing a solid as a combination of primitive solids, as 

contrastive to the boundary representation. 

 145 

Table 2. Possible forms of defect semantic models. 146 

Semantic forms Definition Level of specificity 

Linked data model 

A model to represent and organize structured data on 

the web to facilitate data sharing, integration, and 

interoperability. 

Low 

Entity-relationship diagram 
A visual representation of the major entities, attributes, 

and relationships within a database system. 
Medium 

Industry foundation classes 

An open, standardized data model for the exchange and 

sharing of built asset-related information across 

platforms and throughout project lifecycle. 

High 

 147 

3. Research methods 148 

A desk research is conducted to understand the changing CV-based SHM landscape, which 149 

involves a combination of critical review, thematic analysis, trend analysis and comparative 150 

study. 151 

(1) Critical review. At the center of the research is a critical review method (Grant and 152 

Booth, 2009), which aims to derive new conceptual model to decipher the current 153 

research trend by deeply interpreting existing body of work in CV-based SHM. It does 154 
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not aim for systematicity and comprehensiveness in covering past literature, which is 155 

normally necessitated by a systematic review approach  (Grant and Booth, 2009). To 156 

identify a list of representative works, the authors leveraged their extensive 157 

experience at the intersection of CV, SHM, and 3D reconstruction. This was 158 

supplemented by a literature search on major databases such as Web of Science (WoS) 159 

and Google Scholar. In total, 110 scholarly works were reviewed, all of which were 160 

published in English. The majority of the articles were peer-reviewed journal papers, 161 

with a small number of conference papers published in authoritative outlets. Through 162 

the critical review, the authors aim to understand the driving forces behind the shifting 163 

research landscape in CV-based SHM and develop a novel conception of a systematic 164 

roadmap towards defect modeling. 165 

(2) Thematic/Trend analysis. The collected papers undergo a thematic analysis to make 166 

sense of their content. As a widely used analytical approach in qualitative research, 167 

thematic analysis focuses on identifying, analyzing, and interpreting patterns of 168 

meaning (or "themes") within qualitative data. The objective is to uncover the internal 169 

mechanisms and driving forces behind the current shift from defect detection to defect 170 

modeling. Therefore, it is natural to use “defect detection” and “defect modeling” as 171 

selective themes for analysis. Special attention is given to the development of the 172 

respective research fields. To understand their evolution from a historical perspective, 173 

a trend analysis method is employed. Key indicators for the trend analysis encompass 174 

factors such as annual publication numbers for each field, accuracy and other 175 

performance metrics of related models or algorithms (e.g., mean average precision 176 

(mAP) for defect detection models). 177 

(3) Comparative study. The trend analysis of the respective themes, i.e., "defect 178 

detection" and "defect modeling", will be holistically examined through a 179 

comparative study. Defined as a research methodology that compares multiple subject 180 

matters to uncover inherent patterns among them, the comparative study method is 181 

well-suited for achieving our research objectives. By comparing the evolution 182 

trajectories of the two aforementioned themes, we expect to illuminate the nexus and 183 

interplay between advancing data inspection platforms, enhanced defect detection 184 

performance, and the emergence of defect modeling research. In doing so, the current 185 

shift from defect detection to defect modeling can be better understood, and a more 186 

systematic approach to defect modeling can be established. 187 

 188 
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4. Results analysis 189 

4.1. Evolvement of defect detection research 190 

Among the reviewed articles, the earliest defect detection research can be traced back to 1993. 191 

Since then, the research field has undergone 30 years of polynomial growth, as illustrated by 192 

Fig. 3. This 30-year development can be roughly divided into three phases: the infancy stage, 193 

the development stage, and the explosive stage. 194 

 195 

4.1.1. Infancy stage (pre-2006): Sporadic exploration  196 

Before 2006, the research area was still in its infancy. This period is characterized by a 197 

sluggish development, as evidenced by the small number of annual publications (or without 198 

publications at all) during the time. Only sporadic exploration was made on and off, with a 199 

lack of continuous research input. 200 

 201 

A closer look into the research during this period reveals a primary interest in the 202 

development of robotic systems capable of detecting defects in hard-to-reach civil structures, 203 

such as buried pipelines (Bradbeer et al., 1997; Nickols et al., 1997) and underwater bridge 204 

piers (DeVault, 2000). The emphasis was on designing mechanical systems that ensured the 205 

safe navigation of robots in challenging environments. In terms of defect detection, these 206 

systems predominantly relied on human inspectors to review footage captured by on-board 207 

cameras and to identify defects that may have occurred. Only a handful of studies aimed to 208 

automate data analysis for defect detection. For instance, Klassen and Swindall (1993) 209 

developed an automated crack detection system for road pavements, which incorporated a 210 

series of image analysis algorithms. Similarly, Tanaka and Uematsu (1998) proposed a 211 

morphological approach for road crack detection that includes black pixel extraction, saddle 212 

point detection, linear feature extraction, and connection processing. Abdel-Qader et al. (2003) 213 

presented a study that compared the performance of four distinct edge detection algorithms in 214 

bridge crack recognition. 215 
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 216 

Fig. 3. (a) Annual publication numbers in defect detection since 1993; and Distribution of 217 

research on the tasks of image classification, object detection, semantic segmentation, and 218 

instance segmentation in (b) infancy stage, (c) development stage, and (d) explosive stage. 219 

 220 

In retrospect, considering the enormous workload in infrastructure maintenance (L. Abdel-221 

Qader, et al., 2003), researchers had already realized the importance of inspection automation 222 

in SHM as early as the 1990s. However, more focus was directed towards automating data 223 

collection rather than data processing (Bradbeer, et al., 1997; Nickols, et al., 1997). This is 224 

understandable, as even the most effective defect detection algorithm would be rendered 225 

useless without scalable devices (Schempf et al., 2010; Tătar and Pop, 2016) in place to 226 

gather necessary data for processing. The slow progress in this area can also be attributed to 227 

the fact that personal computers at that time lacked the computing power needed to handle 228 

resource-intensive tasks such as image processing. 229 

 230 

4.1.2. Development stage (2006~2016): Semi-automation based on feature engineering  231 

Defect detection publications have experienced a steady growth since 2006. This pattern of 232 

growth continued towards to 2016. The ten-year development stage is featured by stable 233 
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research input, with in average 2.1 papers published annually. 234 

 235 

Research during this stage was all based on IPT. In the context of defect detection, this 236 

involves leveraging various IPTs to manipulate digital images and extract useful defect-237 

related information. It can range from identifying image pixels that correspond to defects (Y. 238 

Huang and Xu, 2006; Sinha and Fieguth, 2006; Tsai et al., 2010) to extracting high-level 239 

defect properties based on the identified pixels (German et al., 2012; Nishikawa et al., 2012; 240 

Zhu et al., 2011). IPT-based defect detection is problem-oriented and domain-specific. It 241 

relies on primitive knowledge about the objects of interest to select appropriate IPTs for 242 

defect-sensitive feature extraction. Take crack recognition as an instance. Abdel-Qader (2006) 243 

observed that cracks are formed by the continuation of darker-colored pixels distributed 244 

linearly, and developed a convolution-based linear structure detector for bridge crack 245 

detection. This linearly distribution assumption is followed by many other crack detection 246 

researchers (Oh et al., 2009; Qin Zou et al., 2012). 247 

 248 

Unlike cracks, spalling or corrosion appears as clusters of pixels expanding in both 249 

dimensions of a plane. Pakrashi et al. (2010) took advantage of the visual contrast between 250 

corroded areas and neighboring pixels, applying Otsu's thresholding to extract corrosion in 251 

harbor structures. German et al. (2013) developed an entropy-based method to detect spalling 252 

from images, based on the observation that spalling areas tend to exhibit rougher textures. 253 

Koch and Brilakis (2011) conducted a pre-segmentation of road images into defect and non-254 

defect regions using histogram shape-based thresholding, which was followed by an elliptic 255 

regression for the extraction of cyclic-like potholes. There are many other types of defects, 256 

such as bolt loosening (Y. J. Cha et al., 2016; Ramana et al., 2019), underwater cracks (Z. 257 

Zhang et al., 2018), and pavement distress (Doycheva et al., 2017). It is unrealistic to expect a 258 

one-size-fits-all collection of IPTs; rather, the choice of techniques and their implementation 259 

sequence should be determined on a case-by-case basis, depending on the specific type of 260 

defects to detect and the detection environment. The general principle of remains the same 261 

(Mohammad R Jahanshahi et al., 2009; C. M. Yeum and Dyke, 2015). It first relies on 262 

domain experts to identify visually distinctive patterns of the defects of interest. Then, based 263 

on these patterns, image features are engineered using an array of IPTs to extract the defects.  264 

 265 

As presented in Fig. 3 (c), studies during this stage primarily focus on semantic segmentation. 266 

The emphasis on semantic segmentation can be attributed to the inherent nature of IPTs. 267 

Since an IPT typically processes images pixel by pixel in a bottom-up manner, it directly 268 
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outputs pixel-wise binary maps where zero and non-zero values indicate non-defect 269 

background and defects, respectively. This is precisely the function of semantic segmentation 270 

(L.-C. Chen et al., 2017). This hard-wired binary division is inherently limited when dealing 271 

with multi-classification problems or when there are statistic uncertainties. To address the 272 

limitations, a line of research attempted to combine the generalizability of ML with the 273 

characterizability of IPT-extracted features (Junjie Chen and Liu, 2021; Halfawy and 274 

Hengmeechai, 2014; Yang and Su, 2008). Yang and Su (2008) compared the performance of 275 

three different ML algorithms—back-propagation neural networks, radial basis networks, and 276 

SVMs—in classifying sewer pipe defects based on texture features described by wavelet 277 

transforms and co-occurrence matrices. To ensure detection robustness, Halfawy and 278 

Hengmeechai (2014) trained an SVM classifier to identify root intrusion defect instances 279 

based on the histograms of oriented gradients (HOG) features. Cha et al. (2016) designed a 280 

series of damage-sensitive features using Hough transform and used them as input to an SVM 281 

for loosened bolt detection. The synergistic integration of IPT and ML enhances the 282 

robustness of hand-engineered features and the overall defect detection performance. 283 

 284 

Data samples are essential to iteratively configure the hand-engineered features using IPTs. 285 

This is even more critical when ML is utilized. A close analysis of research published 286 

between 2006 and 2016 reveals a predominant reliance on private datasets collected by the 287 

respective research teams. The only exception is (Zou, et al., 2012), which was further 288 

expanded into a dataset called CrackTree260, consisting of 260 road pavement crack images 289 

and made public in (Q. Zou et al., 2012). Due to the requirement for manual feature 290 

engineering, methods proposed during the development stage (2006-2016) can only be 291 

considered semi-automated. 292 

 293 

4.1.3. Explosive stage (post-2016): Fully automation by end-to-end learning 294 

The research field has experienced an explosive development stage since 2016, which can be 295 

attributed to the resurgence of DL. This is evidenced by a decomposition of the growth curve 296 

in Fig. 3 (a), where defect detection studies based on DL surged and became dominant, while 297 

IPT-enabled detection gradually diminished. Inspired by the success of DL in other areas (e.g., 298 

the historic triumph of AlphaGo in 2016), Zhang et al. (2016) developed a road crack 299 

detection method based on deep CNN. Cha et al. (2017) applied DL to detect civil 300 

infrastructure crack damages, demonstrating its viability. 301 

 302 

The most groundbreaking aspect of DL is its end-to-end training mechanism. Instead of 303 
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relying on human-engineered features, a DL model can automatically learn the features by 304 

gradually adjusting its internal weights and parameters to fit the defects labeled by humans 305 

(X. Zhang et al., 2023). It accepts raw inspection images as input and directly output defect 306 

detection results. As long as the training data covers sufficient variations, DL can learn more 307 

generalizable defect features than those extracted by IPTs. The pioneering work by L. Zhang 308 

et al. (2016) demonstrated the superiority of the learned deep features, which can lead to 309 

better defect detection accuracy. The promise demonstrated has stimulated a plethora of 310 

studies (C. Feng et al., 2020; Hoskere et al., 2018a; Qi et al., 2022; Yang Zhang and Yuen, 311 

2021). Kim et al. (2019) compared traditional ICP-extracted features and deep features 312 

learned by CNNs, and found that the CNN-learned features outperformed their counterparts 313 

in differentiating cracks and non-crack noise patterns. Cha et al. (2018) applied Faster 314 

Region-based CNN (Faster R-CNN) in multi-defect detection, accurately locating five types 315 

of defects with bounding boxes. Since DL features are automatically learned, there is no need 316 

to customize different features for different types of defects. This significantly lowers the 317 

barrier to multi-class defect detection, as seen in Yeum et al. (2018), Cheng and Wang (2018), 318 

Hüthwohl et al. (2019), S. Li et al. (2019), and many others. In addition to 2D images, 319 

attempts have also been made to harness the power of DL to process complementary data 320 

modalities. For example, Tong et al. (2017) designed an ensemble of CNNs for ground-321 

penetrating radar (GPR) scan processing to detect concealed pavement cracks. Beckman et al. 322 

(2019) complemented DL-detected concrete defects with depth information provided by 323 

RGB-D cameras to achieve volumetric quantification of spalling. Wu et al. (2019) integrated 324 

the visual images and laser-scanned 3D point clouds for road pothole assessments. 325 

 326 

In terms of task types, research at this stage presents significantly greater diversity than the 327 

monotonous focus on semantic segmentation during the Development Stage (see Fig. 3 (c) 328 

and (d)). While the number of publications focusing on semantic segmentation remains 329 

largely the same, attention paid to image classification and object detection has substantially 330 

increased. A significant proportion of research effort was devoted to classification between 331 

2016 and 2019. Apart from early works by (L. Zhang, et al., 2016) and (Y.-J. Cha, et al., 332 

2017), Gao and Mosalam (2018) conducted a classification of damage types by introducing 333 

Transfer Learning to train VGGNet (Visual Geometry Group). Similarly, Feng et al. (2019) 334 

reported an automatic dam defect classifier based on Inception-v3 CNN model. The output of 335 

classification does not convey information concerning defect location and appearance (A. 336 

Zhang et al., 2017). Therefore, research interests in this task gradually diminished after 2019, 337 

with a shift towards object detection. Maeda et al. (2018) employed the Single Shot MultiBox 338 
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Detector (SSD) to detect eight types of road damages from a large self-collected dataset. 339 

Deng et al. (2020) modified Faster R-CNN to ensure concrete crack detection performance in 340 

complex scenarios where handwriting scripts co-exist with defects on structural surface. 341 

Huang et al. (2022) proposed a dam damage detection method based on Faster R-CNN, 342 

which can efficiently identify and locate three types of defects in images. Object detection 343 

still fails to provide the highest level of information granularity required by practical 344 

applications (Junxin Chen et al., 2023). Instance segmentation can achieve defect property 345 

quantification to instance-level, but unfortunately, only two articles have addressed this topic 346 

(Wei et al., 2019; Wu, et al., 2019). 347 

 348 

The DL revival would not have been possible without big data. Large DL models, with their 349 

millions of internal network parameters, require sizable datasets to train (Pan and Yang, 2020). 350 

To address this fundamental need, many large-scale defect datasets have been created and 351 

shared within the research community. When the amount of data is insufficient, researchers 352 

often resort to a technique called data augmentation to expand the dataset. Common data 353 

augmentation approaches involve image manipulation such as flipping, resizing, cropping, 354 

and adjusting brightness and contrast (Junjie Chen and Liu, 2021). Tang and Chen (2020) 355 

proposed a novel data augmentation technique based on the scale-space theory, which is fully 356 

analytical and tractable. More advanced approaches use generative models, such as 357 

Generative Adversarial Nets (GAN) and Stable Diffusion, to generate synthetic samples. Gao 358 

et al. (2019) demonstrated the effectiveness of GAN-based data augmentation in improving 359 

defect detection performance. Maeda et al. (2020) augmented a road damage dataset by 360 

combining GAN with Poisson blending, which can generate high-quality samples. Table 3 361 

lists details of five typical defect datasets. With such publicly available datasets and 362 

consistent evaluation metrics, it is viable to objectively evaluate the progress of the research 363 

field (Arya et al., 2022). 364 

 365 

Table 3. Representative defect image datasets. 366 

Name Num. of classes Defect classes Num. of images 

Structural ImageNet 4 
No damage, Flexural damage, Shear 

damage, Combined damage 
36,413 

RDD 8 * 

Longitudinal cracks (×2), Transverse 

cracks (×2), Alligator cracks (×1), and 

other corruption (×3) 

47,420 

METU 2 Crack, and Non-crack 40,000  

CrackTree260 2 Crack, and Non-crack 35,100 

CrackForest 2 CrackForest 11,800 

* Refers to the total number of subclasses, of which the number for each class is presented in brackets of next column 367 
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 368 

Despite the generally perceived success of DL, little effort has been made to comprehensively 369 

compare the state-of-the-art defect detection results across studies, which is critical to 370 

position the current progress. Yet, due to the huge variations in task targets, evaluation 371 

metrics and data complexity adopted by different studies, such cross-study comparison is 372 

challenging. As a counter-measure, this research categorizes the results into the three tasks of 373 

image classification, object detection and semantic segmentation. For each task, the most 374 

prevalent performance metric is chosen, i.e., accuracy, mAP, and mIoU for classification, 375 

detection and segmentation, respectively. When different metrics were used by the reviewed 376 

studies, they will be normalized if possible; otherwise, they are excluded from the evaluation. 377 

For example, some studies used F-score to measure their defect semantic segmentation 378 

results. For these cases, we converted the F-score results to IoU before comparison (Dawood 379 

et al., 2017; A. Zhang, et al., 2017). As for data complexity, we divided the used datasets into 380 

three level of complexity, i.e., low complexity (small scene with only defect present), 381 

medium complexity (medium defect scene with certain background and/or foreground 382 

objects), and high complexity (large-scale scene with only small portions of defects). 383 

 384 

Fig. 4 shows defect detection results compiled by the aforementioned method. Task-wise, 385 

unlike the commonly over 0.9 score achieved by classification, the tasks of object detection 386 

and semantic segmentation have experienced relatively less satisfactory results, with 387 

mAP/AP and mIoU/IoU falling in the range of [0.7,0.9], and [0.6,0.8], respectively. 388 

Regarding the effect of data complexity, the performance was unanimously found to drop as 389 

more variations and contextual items are presented in images. To solve practical problems in 390 

SHM, it is important to achieve effective defect detection from images featuring complex 391 

scenes instead of idealistically simple backgrounds (Hsieh and Tsai, 2020). This is also driven 392 

by the rise of new hardware (e.g., drones) that tend to capture unstructured images in large 393 

complex scenes, as opposed to dedicatedly designed devices (Jiang and Zhang, 2020). One 394 

straightforward solution to this complex-scene detection problem is to confine the detection 395 

to only ROIs that are subject to the occurrence of defects. The identification of ROI can be 396 

either done by DL-based component recognition (Kim et al., 2023; Liang, 2019; Xiao et al., 397 

2024) or guided by primitive knowledge from the Building Information Model (BIM) (Junjie 398 

Chen et al., 2019; Junjie Chen, et al., 2023). Another direction is to improve the robustness of 399 

DL-enabled defect detection against background noise, as demonstrated by Bang et al. (2019), 400 

Kang et al. (2020), and Kang and Cha (2021). Nevertheless, given the still stagnant progress 401 

in defect segmentation in complex scene (average mIoU of 0.601), more needs to be done.  402 
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 403 

Fig. 4. Statistic summary of the state-of-the-art defect detection performance: (a) Image 404 

classification; (b) Object detection; (c) Semantic segmentation; (d) Examples showing 405 

different level of data complexity.   406 

 407 

4.2. Evolvement of defect modeling research  408 

It was not until recently that research on defect modeling emerged as a significant trend. The 409 

exploration has given rise to two distinct streams of work: one addressing the geometric 410 

aspects of defects, and the other concentrating on data modeling of defect properties and 411 

semantic information. Some early works a decade ago had already begun to investigate some 412 

of the objectives defect modeling seeks to accomplish, e.g., characterization of defect 413 

properties. To gain a comprehensive understanding of the current state, this section will first 414 

delve into its past by examining these early works on defect characterization. 415 

 416 

4.2.1. Early defect characterization works driven by the need of property measurement 417 

The ultimate purpose of defect detection is to derive properties that hold practical value for 418 

engineering analytics, e.g., defect types, positions, dimensions, areas, and volumes. This goal 419 

partially aligns with the mission of defect modeling and has been investigated early on 420 

through a myriad of studies. 421 

 422 

Prior research on defect detection has primarily concentrated on 2D images. This 2D 423 

detection suffers from the lack of depth information, which hampers accurate characterization 424 

of defects' 3D geometry in physical space. To address this issue, scholars have introduced 425 

relative metrics to assess the severity level by comparing the dimensions of defects to those 426 
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of the affected components (German, et al., 2012; Zhu, et al., 2011).  Zhu et al. (2011) argued 427 

that crack properties measured in pixels are of little value unless they are correlated to the 428 

measurements of structural elements. German et al. (2012) quantified severity of concrete 429 

spalling by comparing its pixel-represented dimensions to the width of the structural elements. 430 

At the meantime, some researchers attempted to derive absolute defect measurements by 431 

certain predetermined primitives such as the pixel-to-metrics ratio, which is either 432 

deterministically measured (Nishikawa, et al., 2012; Wei, et al., 2019) or statistically 433 

regressed (Adhikari et al., 2014; Dawood, et al., 2017). Nishikawa et al. (2012) estimated 434 

crack width by applying a known image resolution measured by mm/pixel. Wei et al. (2019) 435 

adopted a similar approach to measuring concrete bugholes. Adhikari et al. (2014) trained a 436 

neural network to estimate crack depth after obtaining crack length and width using the pixel-437 

to-metric conversion method. In practice, it is unrealistic to obtain primitives like the pixel-438 

to-metrics ratio beforehand. With the principle of photogrammetry, Lee et al. (2013) 439 

established a theoretical model to derive the relationship between pixel and metric 440 

measurement, which eliminates the need of pre-calibration. Jahanshahi and Masri (2013) 441 

improved this photogrammetry-based method by considering situations where the camera 442 

orientation is not perpendicular to the defect plane. 443 

 444 

Early defect characterization works also sought to obtain geo-spatial location of the defects. 445 

The purpose is to correlate the defects detected from 2D images, which usually only depict a 446 

local part of the concerned structure, to the global context for better interpretation (Lim et al., 447 

2014). To achieve this purpose, Li et al. (2018) proposed a defect detection and localization 448 

network (DDLNet) to detect and locate civil structure defects simultaneously, wherein the 449 

geo-localization was achieved via content-based image retrieval. Kang and Cha (2018) 450 

applied ultrasonic beacon to guide the navigation of UAV in GPS-denied environments, and 451 

used the geo-tagged information to position bridge defects. Ma et al. (2021) realized coarse 452 

building defect localization by dividing a floor area into discrete grids. Defects detected are 453 

automatically assigned to corresponding grids, and visualized in BIM with different colors.  454 

 455 

4.2.2. Exploration on modeling defect geometry in 3D 456 

Early efforts in defect characterization addressed some practical engineering demands, but 457 

did not adequately capture the defect geometry and its spatial context in an intuitive manner. 458 

The limitation gives rise to defect geometric modeling in the holistic 3D contexts of facilities.  459 

 460 

Explorative efforts in geometric modeling have been undertaken in a decentralized and 461 

bottom-up manner. A notable characteristic of such decentralized endeavors is the lack of 462 



17 

 

consensus on the appropriate forms of representation for the modeling (Zlatanova, 2017). 463 

Some has resorted to naïve 3D representation like pseudo-3D (Insa-Iglesias et al., 2021; 464 

Mohammad R. Jahanshahi et al., 2011; Oh, et al., 2009). Insa-Iglesias et al. (2021) developed 465 

a panorama-based defect visualization system called 3D Virtual Inspector for tunnel SHM. As 466 

the defects are presented by highlighted pixels in stitched 360° photographs, it can only be 467 

considered a pseudo-3D representation. A more popular, and perhaps more unarguably, type 468 

of simplistic 3D representation is point cloud. A typical workflow usually involves (a) the 469 

application of the multi-view stereo vision to recover a sense of depth from multiple mutually 470 

overlapped images, (b) the use of algorithms such as Structure from Motion (SfM) to 471 

reconstruct a point cloud of the structure from a collection of inspection images by iteratively 472 

applying the multi-view triangulation, and (c) a backward projection to correlate the defects 473 

detected on 2D images to clusters of 3D points in the point cloud (referred to as DPC).  474 

 475 

Liu et al. (2016) presented one of the earliest works on defect geometric modeling using point 476 

clouds. They demonstrated the feasibility of SfM reconstructed point clouds for measuring 477 

defect properties, irrespective of the photo-taking positions. Khaloo et al. (2018) and Zhao et 478 

al. (2022; 2021) expanded the use of 3D reconstructed photogrammetric point clouds for 479 

large-scale civil infrastructure inspection. Lu et al. (2020) conducted an exploratory 480 

investigation into the geometric accuracy of point clouds for infrastructure SHM. Chaiyasarn 481 

et al. (2022) applied a CNN-based semantic segmentation technique for pixel-level crack 482 

detection from photogrammetrically reconstructed 3D models, inherently correlating detected 483 

defects with the geometric model. Point clouds generated by SfM are up-to-scale, meaning 484 

they only reconstruct relative spatial positions among points that do not necessarily adhere to 485 

the identical scale and origin of the physical assets. To avoid cumbersome calibration using 486 

ground control points (Zhao, et al., 2021), Chen et al. (2022; 2023) leveraged BIM as a 487 

natural landmark to register the point cloud to the actual scale. The resulting DPC offers a 488 

geometric model that can be directly measured for property extraction. 489 

 490 

Despite its simplicity, point cloud can be redundant in modeling the numerous defects a 491 

facility may have. It is particularly evident given that defect geometry often follows certain 492 

primitive patterns. For instance, a crack is usually linearly distributed and can be effectively 493 

represented by a few polylines with vertices capturing its turning points, which is more 494 

efficient than using hundreds of points to detail every aspect of it. The undesirable 495 

redundancy of point cloud prompts researchers to seek for more effective representations. 496 

Mesh is perhaps the most common among various alternatives. Hoskere et al. (2018b) 497 
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generated mesh models of damaged facilities by applying Poisson surface reconstruction to 498 

the SfM-derived point cloud, onto which different types of defects (cracks, spalling, debris, 499 

etc.) were modeled via UV mapping. Similarly, Isailović et al. (2020) employed triangular 500 

meshes to represent bridge spalling damages. In contrast to mesh representations that only 501 

model boundary surfaces, Taraben and Morgenthal (2021) proposed a voxel-based method, 502 

which can be advantageous when volumetric quantification is required. Zhang and Lin (2022) 503 

introduced an automatic remeshing method to dynamically update the FEM with defect 504 

information for structural analysis. 505 

 506 

Many other representations were proposed for different defect types. Liu et al. (2020) and 507 

Hamdan et al. (2021) modeled bridge pier cracks with polylines, which follows the 508 

observations that most cracks appear as linear structures. Hüthwohl et al. (2018) projected 509 

photorealistic texture of defects to facility models for representation, whereas Artus and Koch 510 

(Artus et al., 2022; Artus et al., 2021; Artus and Koch, 2020a) conducted a series of works to 511 

explore the effectiveness of different defect geometry representation methods, e.g., texture-512 

based and void-based.  513 

 514 

4.2.3. Exploration on defect semantic representation 515 

Abstraction of a defect entity goes beyond its geometry. The past decade has witnessed an 516 

uprise of research to formally model semantic properties of structural defects. To improve 517 

defect information reusability and facilitate machine-processable evaluation, Hamdan et al. 518 

(2021) developed a linked data model for semantic representation of recorded damages based 519 

on semantic web technologies. Musella et al. (2021) formally defined a data scheme for 520 

representing masonry and concrete building defects, and achieved a dynamic linkage between 521 

the quantitative (position, shape, and extent of damage) and qualitative (building component 522 

affected, possible mode of failure, etc.) information. 523 

 524 

Defect semantic modeling research is accompanied by rapid proliferation of BIM (Tan et al., 525 

2022), and thus a major line of research aims to come up with an IFC data model or extends it 526 

for defect information modeling. Ma et al. (2015) built upon existing IFC schema to propose 527 

an information model for post-earthquake assessment of reinforced concrete structures. The 528 

study also extends IFC by introducing two new classes to represent segments of broken 529 

building elements and the relationship between segments and cracks. To automate post-530 

earthquake damage assessment, Anil Engin et al. (2016) developed an automated method to 531 

generate damaged model from BIM and recorded damage information. As for common 532 
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defects obtained by daily inspection, Hüthwohl et al. (2018) conducted an in-depth 533 

examination for the development of an IFC information model to organize inspection data 534 

related to reinforced concrete bridges. Sacks et al. (2018) compiled an Information Delivery 535 

Manual (IDM) to specify the technical components, activities and information exchanges in 536 

bridge inspection, and specified a data exchange schema based on IFC4 Add2 for bridge 537 

damage information. Artus and Koch (2020a) stressed the importance of efficiently storing 538 

and exchanging defect information, and explored different ways to model the geometry and 539 

semantics of physical damages based on IFC. They further examined the performance and 540 

compatibility of existing BIM software in supporting the newly developed IFC model view 541 

(Artus and Koch, 2021). Artus et al. (2022; 2021) presented an object-oriented data model 542 

utilizing standard IFC format for representing defect related information encompassing both 543 

geometry and semantics.  544 

 545 

4.3. Comparative analysis and findings 546 

This section aims to unravel the shifting research landscape in CV-enabled SHM by directly 547 

contrasting the development trajectories of defect detection and defect modeling research. As 548 

illustrated in Fig. 5, the emergence of defect modeling research is found to be coherent with 549 

the Explosive Stage of defect detection. 550 

 551 

Fig. 5. Evolvement of defect modeling research, and its aligning uprise with defect detection 552 

research since 2016. 553 

 554 

The alignment is not coincidental; rather, it could reveal the underlying structural reasons 555 

behind the current shift. One can easily draw a connection between the rise of defect 556 
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modeling research and the application of DL in SHM. After all, it was not until 2016 that the 557 

research community began to investigate defect modeling at scale, aligning perfectly with the 558 

DL boom (L. Zhang, et al., 2016). In many ways, DL has proven to be superior to its 559 

preceding IPT-based counterparts. This superiority is evident in the significantly improved 560 

precision and robustness of defect detection, as quantitatively demonstrated in numerous 561 

studies (Y.-J. Cha, et al., 2017; Kim, et al., 2019) and reflected by the diminishing number of 562 

IPT research in Fig. 3. DL's advantages also involve its adaptability to a wide range of defect 563 

detection tasks, including classification, object detection, semantic segmentation, and 564 

instance segmentation. This enhancement in precision and versatility is crucial, as it enables 565 

SHM researchers to move beyond the minor implementation details of defect detection and 566 

focus on broader and more practical concerns, such as defect modeling. 567 

 568 

Behind the defect detection-modeling nexus is a more implicit and thus somehow overlooked 569 

factor — data. DL-based defect detection is data greedy, and so is defect modeling. 570 

Recovering a 3D model of a structure (or even a part of it), removing outliers from the 571 

reconstructed 3D points through bundle adjustment, or fitting defect points with parametric 572 

models all necessitate a sizable collection of images. Consequently, the increasingly easy 573 

access to large-scale inspection data could be a confounding factor causing the seemingly 574 

mysterious concurrence. The argument is re-affirmed by the timing when the commercial 575 

drone industry took off. For example, Amazon announced its ambitious drone-based delivery 576 

initiative in 2013. It was in 2015 that DJI released its flagship drone model – DJI Phantom 3, 577 

which offered high-performance drone products at affordable prices. The popularity of 578 

commercial drones and other robots has significantly reduced the cost of inspection data 579 

collection, leading to an abundance of available data whether for training DL-based defect 580 

detection algorithms (K. Lee et al., 2022; Sajedi and Liang, 2021) or for 3D reconstruction in 581 

defect modeling (Junjie Chen, et al., 2023; Isailović, et al., 2020). 582 

 583 

In addition to the factors mentioned above, the shift towards defect modeling would not have 584 

been possible without the fundamental support provided by increasing computing power and 585 

advancements in algorithms. Since defect modeling involves processing large amounts of 586 

data (e.g., SfM reconstruction and point cloud processing), powerful computing tools are 587 

essential. This is also a prerequisite for DL-based defect detection, further elucidating its 588 

simultaneous emergence with the growing focus on defect modeling. The continuous 589 

improvement of algorithms is another foundational factor. While SfM was proposed as early 590 

as the 1980s, the development of scale-invariant local features like SIFT (Scale-Invariant 591 
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Feature Transform) and SURF (Speeded-Up Robust Features) has made it more practical to 592 

implement due to their ability to extract abundant feature correspondences across images. 593 

Emerging variations, such as COLMAP (Schonberger and Frahm, 2016) and HashSIFT 594 

(Suárez et al., 2021), also enhance traditional SfM in terms of efficiency and applicability in 595 

textureless scenarios. Algorithmic improvements of this nature contribute to defect modeling 596 

in large-scale scenario reconstruction. 597 

 598 

The easy access to computing power, the surge of inspection data, and the continuous 599 

improvement of algorithms are driving forces behind the development of defect modeling. 600 

However, it is crucial to remember that for something to become prevalent, it must offer 601 

fundamental utility to its subject area. In the case of defect modeling, the primary reason for 602 

its popularity lies in the benefits that the resulting defect model provides in guiding more 603 

comprehensive and objective facility maintenance decision-making. This has significant 604 

implications for promoting a cultural shift in SHM towards data-driven and evidence-based 605 

facility maintenance. 606 

 607 

5. A roadmap towards defect modeling 608 

Based on the above findings, a roadmap is formulated to synchronize future efforts towards 609 

defect modeling on a solid footing. As illustrated in Fig. 6, the roadmap outlines key research 610 

activities, as well as assesses the progress made in their respective fields. 611 

 612 

Fig. 6. The proposed roadmap towards defect modeling. 613 

 614 

Step 1. Instance segmentation in context. The shift towards defect modeling does not render 615 

defect detection obsolete. On the contrary, it imposes higher demands. This is because defect 616 

modeling always begins with defects detected from specific observations (e.g., images), and 617 

the accuracy of defect detection significantly influences the quality of the resulting defect 618 

model. Prior research has devoted considerable attention to defect detection based on image 619 
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data, resulting in substantial progress. However, most of the defect detection research is 620 

focused on object detection/semantic segmentation from idealistically simple background, 621 

which does not provide instance-level and pixel-wise information that is crucial for modeling 622 

individual defects at later stages. In addition, large-scale modeling involves observation data 623 

with both defects and their contexts captured. Therefore, future research should focus more 624 

on defect instance segmentation in contexts. In this regard, DL models with instance 625 

discrimination capabilities, such as Mask R-CNN, will be highly relevant. Another promising 626 

approach is to directly segment defects from 3D point clouds rather than 2D image 627 

collections. The advantage is clear as it avoids the computationally intensive and sometimes 628 

error-prone 3D reconstruction required by image-based solutions (Hua et al., 2022). However, 629 

research in this field has been limited, possibly due to the prohibitive cost of LiDAR devices 630 

and the lack of mature point cloud processing algorithms (Xie et al., 2020). Limited attempts 631 

made in this field include those by Bahreini and Hammad (2021), Erkal and Hajjar (2017), 632 

and Stałowska et al. (2022). With the increasing affordability of LiDAR and the development 633 

of more powerful algorithms (e.g., PointNet, 3P-RNN, DGCNN), a surge in this research area 634 

is anticipated. 635 

 636 

Step 2. 3D reconstruction. The detected defects play a crucial role in generating DPCs, the 637 

fundamental elements for defect modeling. Different DPC generation approaches should be 638 

adopted depending on how the defects are detected. If the detection is conducted on a point 639 

cloud, the output automatically forms a DPC in which the defect instances have presumably 640 

been identified. When the defects are detected from images, a 3D reconstruction is required 641 

to transform the detected 2D defects into 3D space (Kim et al., 2022). This area has received 642 

most of the recent attention. A classical 3D reconstruction approach is SfM (Saputra et al., 643 

2018), which has been actively explored in recent years for SHM (Khaloo, et al., 2018; Liu, 644 

et al., 2016; Zhao, et al., 2022; Zhao, et al., 2021). The point cloud produced by SfM is up-to-645 

scale, making the normalization of an SfM-generated DPC to the real scale a highly relevant 646 

topic (J Chen, et al., 2022; Junjie Chen, et al., 2023). As precision of the reconstructed DPC 647 

(Lu, et al., 2020) directly affects the quality of the resulting defect model, further research is 648 

suggested to improve 3D reconstruction performance. 649 

 650 

Step 3. Geometric modeling. With DPCs available, the next steps are to model the defects 651 

both geometrically and semantically. Geometric modeling aims to determine a 3D 652 

representation of a defect based on its DPC. Fundamentally, this is a regression problem with 653 

a target to find a geometric expression that best fits the DPC. For example, cracks can be 654 
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modeled by a series of line segments organized in a tree structure. This tree-organized linear 655 

structure provides a parametric model that can be used to fit a DPC of cracks. The same 656 

concept applies to other defects. A mouldy element on a flat surface can be represented by a 657 

polygon, while bulging can be modeled by mesh or NURBS. For potholes or spalling, which 658 

exhibit significant volumetric damage, BRep or CSG might be a sensible choice. A geometric 659 

model provides a structured representation of defects that allows geometry-based analytics 660 

and facilitates information management (Artus and Koch, 2020a). Despite its significance, 661 

little research has been conducted. The few existing studies only aim to convert DPCs into 662 

mesh composed of excessive vertices and faces (Hoskere, et al., 2018b; Isailović, et al., 2020; 663 

Youqi Zhang and Lin, 2022). These mesh representations are redundant and unstructured, 664 

which requires demanding storage and computing resources. Future research should focus on 665 

defect modeling with parametric geometry based on BRep, CSG, and other forms. In this 666 

regard, useful references may be found in geological modeling, an active research field 667 

focused on modeling the geometry of underground fractures, faults, and rock strata (Han et al., 668 

2018; Zhong et al., 2006). However, compared to defects, point samples used in geological 669 

modeling have a sparser pattern. Implications of sampling density in terms of uncertainty, 670 

precision, and efficiency should be considered. 671 

 672 

Step 4. Semantic modeling. The goal of semantic modeling is to organize related properties 673 

of defects into a designated structure, so they are interpretable to both humans and machines. 674 

The well-organized defect properties can be easily retrieved for structural condition 675 

assessment (Artus, et al., 2022; Artus, et al., 2021), and can be combined with domain 676 

knowledge to form an expert system for causal inference (H.-M. Chen et al., 2013; Yu et al., 677 

2023). As shown in Table 4, the semantic information to be model can be divided into four 678 

categories: 679 

- Descriptive semantics. The first category is descriptive, and concerns basic factual 680 

information, e.g., inspection basics (inspector ID, inspection time, etc.), defect types 681 

(cracks, bulging, etc.), and measurement of defect dimensions (length, width, etc.).  682 

- Relational semantics: The second category concerns the relationships among different 683 

defect instances or their relationships with external structural components. For intra-684 

defect relations, potential groupings between defects should be considered. For 685 

example, certain defects (such as cracks, spalling, and corrosion) may be regarded as 686 

individual instances at a local level, while their combination as a whole can represent 687 

a larger defect (e.g., a defective column) at the global level. In terms of defect-688 

component relationships, data fields should be reserved to describe the element to 689 
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which a defect is occurring. 690 

- Diagnostic semantics. Another aspect for semantic modeling is concerned with 691 

diagnostic information related to the causes and rating of the defects, and their 692 

potential counteracting measures.  693 

- Prognostic semantics. Corresponding to the diagnostic is the prognostic information, 694 

which serves to predict the future evolution of the defects. Examples include their 695 

implications in terms of the whole structure and their likely future development.  696 

Although some previous research has addressed the topic of semantic modeling, these efforts 697 

tend to be fragmented and only focus on a part of the information listed in Table 4. Moreover, 698 

existing research is primarily concerned with data structure rather than automation of the 699 

entire pipeline, from defect information extraction to encoding it into a high-level semantic 700 

model. 701 

 702 

Table 4. Aspects for defect semantic modeling. 703 

Category Content Remarks/Examples 

Descriptive Inspection basics Inspector, Time, etc. 

 Defect types Cracks, Bulging, Mouldy, etc. 

 Measurements Length, width, area, volume 

Relational Affecting components Elements the defects occur, e.g., walls and façade 

 Grouping  Nexus among defects, e.g., union and intersects,  

Diagnostic Causes Inferred factors causing the defects 

 Ratings An assessed score assigned to defects 

 Measures Suggested actions for mediation 

Prognostic Implications Implications of the defects 

 Evolvement Forecast future development 

 Affected components Surrounding elements that will be affected 

 704 

Step 5. Formal representation. The final step involves a formal representation of defect 705 

information. The objective is to enhance cross-platform interoperability by modeling the 706 

defect geometry and semantics using formal data schemas. With improved interoperability, 707 

defect information can be better utilized for various purposes, such as numerical simulation 708 

(Min et al., 2023; Youqi Zhang and Lin, 2022) and digital twinning (J Chen, et al., 2022). 709 

Given the prevalence of IFC in the construction industry, a sensible choice is formal 710 

representation based on IFC. Pioneering research has been conducted to develop IFC-based 711 

data models for defect information representation (Artus, et al., 2021; Artus and Koch, 2020a; 712 

Artus and Koch, 2020b). These studies provide a solid foundation for formal defect 713 

representation by outlining the required IFC MVD (Hüthwohl, et al., 2018; Sacks, et al., 714 
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2018). However, more research is needed to address two important questions: (a) whether the 715 

current IFC schema is well-suited to represent the domain-specific information presented in 716 

Table 4; (b) how to automate IFC-based defect representation and integrating it with the 717 

preceding steps in Fig. 6. The final output is a defect information model described by a 718 

formal data schema like IFC. 719 

 720 

6. Pilot study 721 

A small-scale pilot study was implemented to demonstrate key steps in the proposed roadmap. 722 

The structure of interest is a 10-story residential building near The University of Hong Kong 723 

(HKU), which occupies an area of around 26 m × 13 m, and is around 31 m tall. An image-724 

based solution was adopted for defect detection. A total of 260 images were taken by an 725 

airborne camera with a 24 mm focal length and a 4000×2250 resolution.  726 

 727 

In order to extract defect instances from the images, a classical instance segmentation model, 728 

Mask R-CNN, was used. The network weights previously trained on the COCO (Common 729 

Objects in Context) dataset were used as the base model, and fine-tuned on our custom task 730 

of defect detection. The number of training epochs, steps per epoch, learning rate, and weight 731 

decay were set as 30, 100, 0.001 and 0.0001, respectively. There are two types of defects for 732 

the pilot study, i.e., Cracks and Mouldy. Fig. 7 shows the defects detected by the trained 733 

model. It is found that not only the types and corresponding pixels areas of the defects have 734 

been successfully detected, but also individual instances of the defects were accurately 735 

distinguished by the model. This eliminates the need to cluster defective points into instances 736 

during later 3D reconstruction and modeling stages. 737 
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 738 

Fig. 7. Defect detection results based on instance segmentation techniques.  739 

 740 

Fig. 8. 3D reconstructed point cloud with defect instance and types recognized.  741 

 742 

A 3D point cloud model of the target building was reconstructed from the collected aerial 743 

images. It should be noted that the point cloud has been transformed to an equivalent scale of 744 

its physical counterpart in real world. The defect instances recognized in the last step were 745 
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back-projected onto the point cloud model, forming clusters of DPC. Fig. 8 demonstrates the 746 

reconstructed 3D scene associated with instances of different DPCs highlighted in different 747 

colors. Points in lime green represents the cracks, and others in light blue denote the mouldy. 748 

As shown in Fig. 8, instances recognized in the 2D images have been successfully associated 749 

with the point clusters that form them in the 3D space. These clusters of DPCs lay the 750 

foundation of geometric modeling.  751 

 752 

3D geometry of the reconstructed DPCs was modeled with primitive shapes such as lines and 753 

polygons. An automated script using Python was written for this purpose. Point clusters of 754 

different defect instances are treated as separate entity for modeling. Different types of 755 

defects were treated differently. For the cracks, they are fitted with polylines. While this can 756 

be done by various methods, the study applied Hough Transform to detect lines in the 3D 757 

point clouds. The lines detected for the same crack instance are then merged to form a 758 

polyline as its representation. As for mouldy, polygon is used for its representation. Alpha 759 

shape, which is a generalization of the concept of convex hull, is selected to model mouldy as 760 

polygons containing a set of points. A Python library called alphashape was used to realize 761 

the polygon fitting. Note that the coplanar points in 3D space are first converted to 2D space 762 

for polygon fitting. Afterwards, the control points of the fitted polygons are converted back to 763 

original 3D space as the final parametric representation of the mouldy geometry. Fig. 9 shows 764 

the results of geometric modeling, wherein five typical examples are marked with their 765 

instance ID and offered with close-up looks of their geometric representations. It can be 766 

observed that the geometric representations of the defects have been successfully 767 

reconstructed based on the DPC (back dots in close-up views in Fig. 9). Table 5 lists key 768 

information of the reconstructed geometric models.  769 

 770 
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 771 

Fig. 9. Examples of geometric modeling results.  772 

 773 

Table 5. Parameters of defect geometric modeling results.  774 

Instance ID Type Geometric form Geometric Control Points 

CR-01 Crack Polyline {(0.23, -13.42, 26.29), (0.23, -12.86, 26.33),  

  (0.23, -12.86, 26.33), (0.23, -10.65, 26.38)} 

CR-02 Crack Polyline {(7.37, -6.04, 26.15), (7.94, -5.71, 26.40), … 

  (8.50, -5.37, 26.43), (8.78, -5.21, 26.50)} 

CR-03 Crack Polyline {(4.73, -5.41, 29.37), (4.73, -4.41, 29.39), … 

  (4.73, -1.41, 29.46), (4.73, -0.45, 29.45)} 

MO-01 Mouldy Polygon {(0.23, -11.56, 25.76), (0.23, -11.60, 25.78), … 

  (0.23, -11.53, 25.76), (0.23, -11.56, 25.76)} 

MO-02 Mouldy Polygon {(0.23, -12.60, 26.35), (0.23, -12.57, 26.35), … 

  (0.23, -12.66, 26.27), (0.23, -12.60, 26.35)} 

 775 

Semantic properties of the detected defects were extracted and represented by a linked data 776 

model as shown in Fig. 10 (a). The four aspects of semantic information were substantiated 777 

by the linked data model using the Web Ontology Language (OWL) in Protégé. Key 778 

descriptive properties of the selected defects have been listed in Fig. 10 (b). Take “CR-01” for 779 

instance. Basic information such as inspector name (Y** Wong) and inspection time (2021-780 

10-05 07:52:13) has been successfully modeled. Defect type (crack) and dimensions such as 781 

length (2.77 m) were automatically extracted from the geometric modeling results. Finally, 782 

defect information regarding both geometry and semantics was formally represented by IFC 783 

schema. Following (Artus, et al., 2021), the defect is substantiated by the 784 
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IfcBuildingElementProxy entity. The geometry of crack and mouldy, for their geometric 785 

characteristics, was represented by the IfcPolyline and IfcPolyloop entity, respectively. In this 786 

pilot study, only descriptive properties were considered. For their representation, a set of 787 

single-value properties were defined and linked to the defect instances. Fig. 11 shows the 788 

resulting IFC representation of the case study building defects in BIMvision.  789 

 790 

Fig. 10. (a) Linked data model to represent semantic relationship of the defect properties; (b) 791 

Semantic properties of selected defect instances.  792 

 793 

 794 
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Fig. 11. IFC representations of the case study building defects. 795 

 796 

Although this pilot study presents preliminary results for each step outlined in Fig. 6, it only 797 

targets to demonstrate the general principles. Due to its demonstrative nature, many steps in 798 

the pilot study have been simplified. For instance, in crack geometric modeling, only linearly 799 

developed cracks were considered, while in reality, many cracks may evolve into different 800 

branches and form a tree structure. Another example is that only coplanar defects were 801 

considered in the pilot study. For defects with more complex shapes, more sophisticated 802 

geometric representations should be adopted. 803 

 804 

7. Conclusions 805 

A critical review of CV-enabled SHM over the past three decades was conducted. The aim 806 

was to decipher the current shift in research focus from defect detection to defect modeling 807 

by addressing three questions: (a) does the shifting interest indicate a resolution of the defect 808 

detection topic? (b) is the shift a temporary trend or a systematic transition? (c) if the latter is 809 

valid, what are the underlying structural forces driving the transition? Through an in-depth 810 

analysis of 110 papers, it was discovered that the emphasis on defect modeling coincides with 811 

the rise of DL in defect detection. While the DL drastically improved defect detection models, 812 

the high performance was mainly achieved by simple tasks such as classification on idealistic 813 

datasets without contexts and background presented. The shifting focus is not "a flash in the 814 

pan" but rather a structural transition driven by the collective advancements of big data, 815 

computing power, and algorithms. However, this shift to defect modeling does not mean a 816 

resolution of the defect detection problem; instead, it urges the community to address more 817 

practically relevant problems in detection such as the presence of complex background and 818 

the differentiation among defect instances. Based on the review findings, a roadmap is 819 

proposed to align future research efforts on defect modeling in five key areas: instance 820 

segmentation in context, 3D reconstruction, geometric modeling, semantic modeling, and 821 

formal representation. A case study is presented to demonstrate a preliminary implementation 822 

of the roadmap. This research contributes to the understanding of the rapidly evolving 823 

landscape of CV-based SHM and establishes an overarching framework to guide future defect 824 

modeling research. 825 

 826 

Following the key research topics and milestones in the roadmap, future research is suggested 827 

to fuel the field of defect modeling from the following five aspects: 828 

(1) Addressing 2D or 3D instance segmentation in context. The generalizability of DL 829 
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has enabled defect detection to achieve near or even superhuman precision for 830 

relatively simple tasks, such as classification, on datasets with monotonous 831 

backgrounds. However, to remain relevant in the evolving field of defect modeling, 832 

detection methods need to address large-scale scenarios where defects are captured 833 

within the contexts in which they occur. Exploring instance segmentation is also 834 

essential, as it provides crucial instance-level information for modeling individual 835 

defects. The presence of noisy background and the increased complexity introduced 836 

by instance segmentation would render existing detection algorithms less effective. 837 

This is why future defect detection research should pay primary attention to 838 

segmenting defect instances from context-related observations, whether in 2D images 839 

or 3D point clouds.  840 

(2) Building data infrastructure for benchmarking 3D defect modeling performance. 841 

Publicly accessible common data infrastructure is essential for benchmarking 842 

performance, forging consensus, and synergizing research efforts. Several 2D defect 843 

image datasets, such as RDD and Structural ImageNet, have been made available for 844 

defect detection research and have positively contributed to the field's development. 845 

However, for defect modeling, such data infrastructure has yet to be established. 846 

Additionally, a system of evaluation metrics needs to be created to objectively 847 

measure defect modeling performance. With the data infrastructure and evaluation 848 

metrics in place, an overarching framework can be set up to guide future defect 849 

modeling research. 850 

(3) Incorporating defect physics for geometric modeling. The emerging field of defect 851 

modeling is deeply rooted in the disciplines of structural engineering and material 852 

mechanics. Scientific models explaining how defects occur, develop, and evolve 853 

provide insights into the geometric appearance of these defects. Such defect physics 854 

can and should be leveraged to inform geometric modeling. For instance, defect 855 

physics confirms that cracks can only develop linearly, following a tree structure. 856 

Accordingly, it is reasonable to model crack geometry with parametric polylines 857 

organized in a tree structure. Moreover, crack depth can be modeled as a function of 858 

multiple variables, including its surface appearance and material properties. 859 

Establishing such a physics-informed model can help generate a more comprehensive 860 

crack geometric model that considers depth. 861 

(4) Representing defect knowledge for semantic modeling. Semantic modeling of 862 

defects entails organizing defect properties that are of engineering interests in a 863 
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structured manner. To this end, it is necessary to represent domain knowledge in SHM 864 

and defect inspection with a formalism, e.g., in a linked data model. This process is 865 

usually referred to as knowledge engineering. While some exploratory studies have 866 

been conducted, they are generally confined to specific civil structure types, e.g., 867 

bridges, tunnel, or buildings. A universal defect knowledge representation is in 868 

absence. 869 

(5) Formalizing defect representation model for interoperability. The digitalization of 870 

defect information as virtual models does not necessarily make the information easy 871 

to use. In fact, the excessive digital formats and data schemes often results in 872 

numerous gaps between different defect models, making the reuse and exchange of 873 

defect information nearly impossible. These gaps highlight the need to formalize 874 

defect representation models with a universal scheme. The positioning of IFC as a 875 

vendor-neutral and sharable built asset data schema makes it a suitable option for 876 

defect information interoperation, which should be further explored. 877 

 878 

Acknowledgement 879 

This research is supported by the HKU Teaching Development Grant (Project No. 913), HKU 880 

Seed Fund for Basic Research (2201100454), and State Key Laboratory of Hydraulic 881 

Engineering Intelligent Construction and Operation (HESS-2303). 882 

 883 

References 884 

Abdel-Qader, I., Pashaie-Rad, S., Abudayyeh, O. & Yehia, S. (2006). Pca-Based Algorithm for Unsupervised 885 

Bridge Crack Detection. ADVANCES IN ENGINEERING SOFTWARE, 37(12), 771-778. 886 

Abdel-Qader, L., Abudayyeh, O. & Kelly, M. E. (2003). Analysis of Edge-Detection Techniques for Crack 887 

Identification in Bridges. Journal of Computing in Civil Engineering, 17(4), 255-263. 888 

Adhikari, R. S., Moselhi, O. & Bagchi, A. (2014). Image-Based Retrieval of Concrete Crack Properties for 889 

Bridge Inspection. Automation in Construction, 39, 180-194. 890 

Anil Engin, B., Akinci, B., Kurc, O. & Garrett James, H. (2016). Building-Information-Modeling–Based 891 

Earthquake Damage Assessment for Reinforced Concrete Walls. Journal of Computing in Civil 892 

Engineering, 30(4), 04015076. 893 

Artus, M., Alabassy, M. & Koch, C. (2021). Ifc Based Framework for Generating, Modeling and Visualizing 894 

Spalling Defect Geometries. 895 

Artus, M., Alabassy, M. & Koch, C. (2022). A Bim Based Framework for Damage Segmentation, Storage, and 896 

Visualization. 897 

Artus, M. & Koch, C. (2020a). Modeling Geometry and Semantics of Physical Damages Using Ifc, EG-ICE 898 

2020 Workshop on Intelligent Computing in Engineering, Proceedings, 144-153. 899 

Artus, M. & Koch, C. (2020b). State of the Art in Damage Information Modeling for Rc Bridges – a Literature 900 

Review. Advanced Engineering Informatics, 46, 101171. 901 



33 

 

Artus, M. & Koch, C. (2021). Modeling Physical Damages Using the Industry Foundation Classes – a Software 902 

Evaluation. in Toledo Santos, E. & Scheer, S. (eds.), Proceedings of the 18th International Conference 903 

on Computing in Civil and Building Engineering, Springer International Publishing, Cham, 507-518. 904 

Arya, D., Maeda, H., Ghosh, S. K., Toshniwal, D., Omata, H., Kashiyama, T. & Sekimoto, Y. (2022). 905 

Crowdsensing-Based Road Damage Detection Challenge (Crddc’2022), 2022 IEEE International 906 

Conference on Big Data (Big Data), IEEE, 6378-6386. 907 

Bahreini, F. & Hammad, A. (2021). Point Cloud Semantic Segmentation of Concrete Surface Defects Using 908 

Dynamic Graph Cnn, ISARC. Proceedings of the International Symposium on Automation and Robotics 909 

in Construction, IAARC Publications, 379-386. 910 

Bang, S., Park, S., Kim, H. & Kim, H. (2019). Encoder-Decoder Network for Pixel-Level Road Crack Detection 911 

in Black-Box Images. Computer-Aided Civil and Infrastructure Engineering, 34(8), 713-727. 912 

Beckman, G. H., Polyzois, D. & Cha, Y.-J. (2019). Deep Learning-Based Automatic Volumetric Damage 913 

Quantification Using Depth Camera. Automation in Construction, 99, 114-124. 914 

Bradbeer, R., Harrold, S., Nickols, F. & Yeung, L. F. (1997). An Underwater Robot for Pipe Inspection. 915 

Brownjohn, J. M. W. (2007). Structural Health Monitoring of Civil Infrastructure. Philosophical Transactions of 916 

the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 589-622. 917 

Cha, Y.-J., Choi, W. & Buyukozturk, O. (2017). Deep Learning-Based Crack Damage Detection Using 918 

Convolutional Neural Networks. Computer-Aided Civil and Infrastructure Engineering, 32(5), 361-378. 919 

Cha, Y.-J., Choi, W., Suh, G., Mahmoudkhani, S. & Büyüköztürk, O. (2018). Autonomous Structural Visual 920 

Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types. Computer-Aided 921 

Civil and Infrastructure Engineering, 33(9), 731-747. 922 

Cha, Y. J., You, K. & Choi, W. (2016). Vision-Based Detection of Loosened Bolts Using the Hough Transform 923 

and Support Vector Machines. Automation in Construction, 71, 181-188. 924 

Chaiyasarn, K., Buatik, A., Mohamad, H., Zhou, M., Kongsilp, S. & Poovarodom, N. (2022). Integrated Pixel-925 

Level Cnn-Fcn Crack Detection Via Photogrammetric 3d Texture Mapping of Concrete Structures. 926 

Automation in Construction, 140, 104388. 927 

Chen, H.-M., Hou, C.-C. & Wang, Y.-H. (2013). A 3d Visualized Expert System for Maintenance and 928 

Management of Existing Building Facilities Using Reliability-Based Method. Expert Systems with 929 

Applications, 40(1), 287-299. 930 

Chen, J. & Liu, D. (2021). Bottom-up Image Detection of Water Channel Slope Damages Based on Superpixel 931 

Segmentation and Support Vector Machine. Advanced Engineering Informatics, 47, 101205. 932 

Chen, J., Liu, D., Li, S. & Hu, D. (2019). Registering Georeferenced Photos to a Building Information Model to 933 

Extract Structures of Interest. Advanced Engineering Informatics, 42, 100937. 934 

Chen, J., Lu, W., Ghansah, F. & Peng, Z. (2022). Defect Digital Twinning: A Technical Framework to Integrate 935 

Robotics, Ai and Bim for Facility Management and Renovation, IOP Conference Series: Earth and 936 

Environmental Science, IOP Publishing, 022041. 937 

Chen, J., Lu, W. & Lou, J. (2023). Automatic Concrete Defect Detection and Reconstruction by Aligning Aerial 938 

Images onto Semantic-Rich Building Information Model. Computer-Aided Civil and Infrastructure 939 

Engineering, 38(8), 1079-1098. 940 

Chen, J., Yu, X., Li, Q., Wang, W. & He, B.-G. (2023). Lag-Yolo: Efficient Road Damage Detector Via 941 

Lightweight Attention Ghost Module. Journal of Intelligent Construction. 942 

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. L. (2017). Deeplab: Semantic Image 943 

Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected Crfs. IEEE 944 

transactions on pattern analysis and machine intelligence, 40(4), 834-848. 945 



34 

 

Cheng, J. C. P. & Wang, M. (2018). Automated Detection of Sewer Pipe Defects in Closed-Circuit Television 946 

Images Using Deep Learning Techniques. Automation in Construction, 95, 155-171. 947 

Dawood, T., Zhu, Z. & Zayed, T. (2017). Machine Vision-Based Model for Spalling Detection and 948 

Quantification in Subway Networks. Automation in Construction, 81, 149-160. 949 

Deng, J., Lu, Y. & Lee, V. C.-S. (2020). Concrete Crack Detection with Handwriting Script Interferences Using 950 

Faster Region-Based Convolutional Neural Network. Computer-Aided Civil and Infrastructure 951 

Engineering, 35(4), 373-388. 952 

DeVault, J. E. (2000). Robotic System for Underwater Inspection of Bridge Piers. IEEE Instrumentation & 953 

Measurement Magazine, 3(3), 32-37. 954 

Dong, C.-Z. & Catbas, N. (2020). A Review of Computer Vision–Based Structural Health Monitoring at Local 955 

and Global Levels. Structural Health Monitoring, 20, 692 - 743. 956 

Doycheva, K., Koch, C. & Koenig, M. (2017). Gpu-Enabled Pavement Distress Image Classification in Real 957 

Time. Journal of Computing in Civil Engineering, 31(3). 958 

Erkal, B. G. & Hajjar, J. F. (2017). Laser-Based Surface Damage Detection and Quantification Using Predicted 959 

Surface Properties. Automation in Construction, 83, 285-302. 960 

Farrar, C. R. & Worden, K. (2007). An Introduction to Structural Health Monitoring. Philosophical Transactions 961 

of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 303-315. 962 

Feng, C., Zhang, H., Wang, H., Wang, S. & Li, Y. (2020). Automatic Pixel-Level Crack Detection on Dam 963 

Surface Using Deep Convolutional Network. Sensors, 20(7), 2069. 964 

Feng, C., Zhang, H., Wang, S., Li, Y., Wang, H. & Yan, F. (2019). Structural Damage Detection Using Deep 965 

Convolutional Neural Network and Transfer Learning. KSCE Journal of Civil Engineering, 23(10), 966 

4493-4502. 967 

Feng, D. & Feng, M. Q. (2018). Computer Vision for Shm of Civil Infrastructure: From Dynamic Response 968 

Measurement to Damage Detection – a Review. Engineering Structures, 156, 105-117. 969 

Gao, Y., Kong, B. & Mosalam, K. M. (2019). Deep Leaf‐Bootstrapping Generative Adversarial Network for 970 

Structural Image Data Augmentation. Computer‐Aided Civil and Infrastructure Engineering, 34(9), 971 

755-773. 972 

Gao, Y. Q. & Mosalam, K. M. (2018). Deep Transfer Learning for Image-Based Structural Damage Recognition. 973 

Computer-Aided Civil and Infrastructure Engineering, 33(9), 748-768. 974 

German, S., Brilakis, I. & DesRoches, R. (2012). Rapid Entropy-Based Detection and Properties Measurement 975 

of Concrete Spalling with Machine Vision for Post-Earthquake Safety Assessments. Advanced 976 

Engineering Informatics, 26(4), 846-858. 977 

German, S., Jeon, J.-S., Zhu, Z., Bearman, C., Brilakis, I., DesRoches, R. & Lowes, L. (2013). Machine Vision-978 

Enhanced Postearthquake Inspection. Journal of Computing in Civil Engineering, 27(6), 622-634. 979 

Grant, M. J. & Booth, A. (2009). A Typology of Reviews: An Analysis of 14 Review Types and Associated 980 

Methodologies. Health Information & Libraries Journal, 26(2), 91-108. 981 

Guo, J., Liu, P., Xiao, B., Deng, L. & Wang, Q. (2024). Surface Defect Detection of Civil Structures Using 982 

Images: Review from Data Perspective. Automation in Construction, 158, 105186. 983 

Halfawy, M. R. & Hengmeechai, J. (2014). Automated Defect Detection in Sewer Closed Circuit Television 984 

Images Using Histograms of Oriented Gradients and Support Vector Machine. Automation in 985 

Construction, 38, 1-13. 986 

Hamdan, A.-H., Taraben, J., Helmrich, M., Mansperger, T., Morgenthal, G. & Scherer, R. J. (2021). A Semantic 987 

Modeling Approach for the Automated Detection and Interpretation of Structural Damage. Automation 988 

in Construction, 128, 103739. 989 



35 

 

Han, S., Wang, G. & Li, M. (2018). A Trace Map Comparison Algorithm for the Discrete Fracture Network 990 

Models of Rock Masses. Computers & Geosciences, 115, 31-41. 991 

Hoskere, V., Narazaki, Y., Hoang, T. & Spencer Jr, B. (2018a). Vision-Based Structural Inspection Using 992 

Multiscale Deep Convolutional Neural Networks. arXiv preprint arXiv:1805.01055. 993 

Hoskere, V., Narazaki, Y., Hoang, T. A. & Spencer Jr, B. F. (2018b). Towards Automated Post-Earthquake 994 

Inspections with Deep Learning-Based Condition-Aware Models. arXiv preprint arXiv:1809.09195. 995 

Hsieh, Y.-A. & Tsai, Y. J. (2020). Machine Learning for Crack Detection: Review and Model Performance 996 

Comparison. Journal of Computing in Civil Engineering, 34(5), 04020038. 997 

Hua, L., Lu, Y., Deng, J., Shi, Z. & Shen, D. (2022). 3d Reconstruction of Concrete Defects Using Optical Laser 998 

Triangulation and Modified Spacetime Analysis. Automation in Construction, 142, 104469. 999 

Huang, B., Zhao, S. & Kang, F. (2022). Image-Based Automatic Multiple-Damage Detection of Concrete Dams 1000 

Using Region-Based Convolutional Neural Networks. Journal of Civil Structural Health Monitoring, 1001 

1-17. 1002 

Huang, Y. & Xu, B. (2006). Automatic Inspection of Pavement Cracking Distress, 15 %J Journal of Electronic 1003 

Imaging(1), 013017. 1004 

Hüthwohl, P., Brilakis, I., Borrmann, A. & Sacks, R. (2018). Integrating Rc Bridge Defect Information into Bim 1005 

Models. Journal of Computing in Civil Engineering, 32(3), 04018013. 1006 

Hüthwohl, P., Lu, R. & Brilakis, I. (2019). Multi-Classifier for Reinforced Concrete Bridge Defects. Automation 1007 

in Construction, 105, 102824. 1008 

Insa-Iglesias, M., Jenkins, M. D. & Morison, G. (2021). 3d Visual Inspection System Framework for Structural 1009 

Condition Monitoring and Analysis. Automation in Construction, 128, 103755. 1010 

Isailović, D., Stojanovic, V., Trapp, M., Richter, R., Hajdin, R. & Döllner, J. (2020). Bridge Damage: Detection, 1011 

Ifc-Based Semantic Enrichment and Visualization. Automation in Construction, 112, 103088. 1012 

Jahanshahi, M. R., Kelly, J. S., Masri, S. F. & Sukhatme, G. S. (2009). A Survey and Evaluation of Promising 1013 

Approaches for Automatic Image-Based Defect Detection of Bridge Structures. Structure and 1014 

Infrastructure Engineering, 5(6), 455-486. 1015 

Jahanshahi, M. R. & Masri, S. F. (2013). A New Methodology for Non-Contact Accurate Crack Width 1016 

Measurement through Photogrammetry for Automated Structural Safety Evaluation. Smart materials 1017 

and structures, 22(3), 035019. 1018 

Jahanshahi, M. R., Masri, S. F. & Sukhatme, G. S. (2011). Multi-Image Stitching and Scene Reconstruction for 1019 

Evaluating Defect Evolution in Structures. Structural Health Monitoring, 10(6), 643-657. 1020 

Jiang, S. & Zhang, J. (2020). Real‐Time Crack Assessment Using Deep Neural Networks with Wall‐Climbing 1021 

Unmanned Aerial System. Computer‐Aided Civil and Infrastructure Engineering, 35(6), 549-564. 1022 

Kang, D., Benipal, S. S., Gopal, D. L. & Cha, Y.-J. (2020). Hybrid Pixel-Level Concrete Crack Segmentation 1023 

and Quantification across Complex Backgrounds Using Deep Learning. Automation in Construction, 1024 

118, 103291. 1025 

Kang, D. & Cha, Y.-J. (2018). Autonomous Uavs for Structural Health Monitoring Using Deep Learning and an 1026 

Ultrasonic Beacon System with Geo-Tagging. Computer-Aided Civil and Infrastructure Engineering, 1027 

33(10), 885-902. 1028 

Kang, D. H. & Cha, Y.-J. (2021). Efficient Attention-Based Deep Encoder and Decoder for Automatic Crack 1029 

Segmentation. Structural Health Monitoring, 0(0), 14759217211053776. 1030 

Khaloo, A., Lattanzi, D., Cunningham, K., Dell’Andrea, R. & Riley, M. (2018). Unmanned Aerial Vehicle 1031 

Inspection of the Placer River Trail Bridge through Image-Based 3d Modelling. Structure and 1032 

Infrastructure Engineering, 14(1), 124-136. 1033 



36 

 

Kim, H., Ahn, E., Shin, M. & Sim, S.-H. (2019). Crack and Noncrack Classification from Concrete Surface 1034 

Images Using Machine Learning. Structural Health Monitoring, 18(3), 725-738. 1035 

Kim, H., Narazaki, Y. & Spencer Jr, B. F. (2023). Automated Bridge Component Recognition Using Close-1036 

Range Images from Unmanned Aerial Vehicles. Engineering Structures, 274, 115184. 1037 

Kim, H., Sim, S.-H. & Spencer, B. F. (2022). Automated Concrete Crack Evaluation Using Stereo Vision with 1038 

Two Different Focal Lengths. Automation in Construction, 135, 104136. 1039 

Klassen, G. & Swindall, B. (1993). Automated Crack Detection System Implementation in Aran, Digital Image 1040 

Processing: Techniques and Applications in Civil Engineering, ASCE, 179-185. 1041 

Koch, C. & Brilakis, I. (2011). Pothole Detection in Asphalt Pavement Images. Advanced Engineering 1042 

Informatics, 25(3), 507-515. 1043 

Koch, C., Georgieva, K., Kasireddy, V., Akinci, B. & Fieguth, P. J. A. E. I. (2015). A Review on Computer 1044 

Vision Based Defect Detection and Condition Assessment of Concrete and Asphalt Civil Infrastructure, 1045 

29(2), 196-210. 1046 

Lee, B. Y., Kim, Y. Y., Yi, S.-T. & Kim, J.-K. (2013). Automated Image Processing Technique for Detecting and 1047 

Analysing Concrete Surface Cracks. Structure and Infrastructure Engineering, 9(6), 567-577. 1048 

Lee, K., Lee, S. & Kim, H. Y. (2022). Bounding-Box Object Augmentation with Random Transformations for 1049 

Automated Defect Detection in Residential Building Façades. Automation in Construction, 135, 1050 

104138. 1051 

Li, R., Yuan, Y., Zhang, W. & Yuan, Y. (2018). Unified Vision-Based Methodology for Simultaneous Concrete 1052 

Defect Detection and Geolocalization. Computer-Aided Civil and Infrastructure Engineering, 33(7), 1053 

527-544. 1054 

Li, S., Zhao, X. & Zhou, G. (2019). Automatic Pixel‐Level Multiple Damage Detection of Concrete Structure 1055 

Using Fully Convolutional Network. Computer-Aided Civil and Infrastructure Engineering, 34(7), 1056 

616-634. 1057 

Liang, X. (2019). Image-Based Post-Disaster Inspection of Reinforced Concrete Bridge Systems Using Deep 1058 

Learning with Bayesian Optimization. Computer-Aided Civil and Infrastructure Engineering, 34(5), 1059 

415-430. 1060 

Lim, R., La, H. & Sheng, W. (2014). A Robotic Crack Inspection and Mapping System for Bridge Deck 1061 

Maintenance. Automation Science and Engineering, IEEE Transactions on, 11, 367-378. 1062 

Liu, Y.-F., Cho, S., Spencer Jr, B. & Fan, J.-S. (2016). Concrete Crack Assessment Using Digital Image 1063 

Processing and 3d Scene Reconstruction. Journal of Computing in Civil Engineering, 30(1), 04014124. 1064 

Liu, Y.-F., Nie, X., Fan, J.-S. & Liu, X.-G. (2020). Image-Based Crack Assessment of Bridge Piers Using 1065 

Unmanned Aerial Vehicles and Three-Dimensional Scene Reconstruction. Computer-Aided Civil and 1066 

Infrastructure Engineering, 35(5), 511-529. 1067 

Lu, R., Rausch, C., Bolpagni, M., Brilakis, I. & Haas, C. (2020). Geometric Accuracy of Digital Twins for 1068 

Structural Health Monitoring. 1069 

Ma, G., Wu, M., Wu, Z. & Yang, W. (2021). Single-Shot Multibox Detector and Building Information 1070 

Modeling-Based Quality Inspection Model for Construction Projects. Journal of Building Engineering, 1071 

38, 102216. 1072 

Ma, L., Sacks, R. & Zeibak-Shini, R. (2015). Information Modeling of Earthquake-Damaged Reinforced 1073 

Concrete Structures. Advanced Engineering Informatics, 29(3), 396-407. 1074 

Maeda, H., Kashiyama, T., Sekimoto, Y., Seto, T. & Omata, H. (2020). Generative Adversarial Network for 1075 

Road Damage Detection. Computer-Aided Civil and Infrastructure Engineering, 36(1), 47– 60. 1076 

Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T. & Omata, H. (2018). Road Damage Detection and 1077 



37 

 

Classification Using Deep Neural Networks with Smartphone Images. Computer-Aided Civil and 1078 

Infrastructure Engineering, 33(12), 1127-1141. 1079 

Min, Q., Li, M., Zhang, M., Lian, H., Jacquemin, T. & Bordas, S. P. (2023). Node Projection Strategy for Fem 1080 

Simulating Cross-Scale Crack Propagation in Massive Concrete Structures. Engineering Structures, 1081 

293, 116665. 1082 

Musella, C., Serra, M., Menna, C. & Asprone, D. (2021). Building Information Modeling and Artificial 1083 

Intelligence: Advanced Technologies for the Digitalisation of Seismic Damage in Existing Buildings. 1084 

Structural Concrete, 22(5), 2761-2774. 1085 

Nickols, F., Ho, D., Harrold, S. O., Bradbeer, R. T. & Yeung, L. (1997). An Ultrasonically Controlled Robot 1086 

Submarine for Pipe Inspection, Proceedings Fourth Annual Conference on Mechatronics and Machine 1087 

Vision in Practice, 142-147. 1088 

Nishikawa, T., Yoshida, J., Sugiyama, T. & Fujino, Y. (2012). Concrete Crack Detection by Multiple Sequential 1089 

Image Filtering. Computer-Aided Civil and Infrastructure Engineering, 27(1), 29-47. 1090 

Oh, J.-K., Jang, G., Oh, S., Lee, J. H., Yi, B.-J., Moon, Y. S., Lee, J. S. & Choi, Y. (2009). Bridge Inspection 1091 

Robot System with Machine Vision. Automation in Construction, 18(7), 929-941. 1092 

Pakrashi, V., Schoefs, F., Memet, J. B. & O'Connor, A. (2010). Roc Dependent Event Isolation Method for 1093 

Image Processing Based Assessment of Corroded Harbour Structures. Structure and Infrastructure 1094 

Engineering, 6(3), 365-378. 1095 

Pan, X. & Yang, T. Y. (2020). Postdisaster Image-Based Damage Detection and Repair Cost Estimation of 1096 

Reinforced Concrete Buildings Using Dual Convolutional Neural Networks. Computer-Aided Civil and 1097 

Infrastructure Engineering, 35(5), 495-510. 1098 

Park, H. S., Lee, H. M., Adeli, H. & Lee, I. (2007). A New Approach for Health Monitoring of Structures: 1099 

Terrestrial Laser Scanning. Computer-Aided Civil and Infrastructure Engineering, 22(1), 19-30. 1100 

Qi, Z., Liu, D., Zhang, J. & Chen, J. (2022). Micro-Concrete Crack Detection of Underwater Structures Based 1101 

on Convolutional Neural Network. Machine Vision and Applications, 33(5), 1-19. 1102 

Ramana, L., Choi, W. & Cha, Y. J. (2019). Fully Automated Vision-Based Loosened Bolt Detection Using the 1103 

Viola-Jones Algorithm. Structural Health Monitoring, 18(2), 422-434. 1104 

Sacks, R., Kedar, A., Borrmann, A., Ma, L., Brilakis, I., Hüthwohl, P., Daum, S., Kattel, U., Yosef, R., Liebich, 1105 

T., Barutcu, B. E. & Muhic, S. (2018). Seebridge as Next Generation Bridge Inspection: Overview, 1106 

Information Delivery Manual and Model View Definition. Automation in Construction, 90, 134-145. 1107 

Sajedi, S. O. & Liang, X. (2021). Uncertainty-Assisted Deep Vision Structural Health Monitoring. Computer-1108 

Aided Civil and Infrastructure Engineering, 36(2), 126-142. 1109 

Saputra, M. R. U., Markham, A. & Trigoni, N. (2018). Visual Slam and Structure from Motion in Dynamic 1110 

Environments: A Survey. ACM Computing Surveys (CSUR), 51(2), 1-36. 1111 

Schempf, H., Mutschler, E., Gavaert, A., Skoptsov, G. & Crowley, W. (2010). Visual and Nondestructive 1112 

Evaluation Inspection of Live Gas Mains Using the Explorer™ Family of Pipe Robots, 27(3), 217-249. 1113 

Schonberger, J. L. & Frahm, J.-M. (2016). Structure-from-Motion Revisited, Proceedings of the IEEE 1114 

conference on computer vision and pattern recognition, 4104-4113. 1115 

Sinha, S. K. & Fieguth, P. W. (2006). Automated Detection of Cracks in Buried Concrete Pipe Images. 1116 

Automation in Construction, 15(1), 58-72. 1117 

Spencer Jr, B. F., Hoskere, V. & Narazaki, Y. (2019). Advances in Computer Vision-Based Civil Infrastructure 1118 

Inspection and Monitoring. Engineering, 5(2), 199-222. 1119 

Stałowska, P., Suchocki, C. & Rutkowska, M. (2022). Crack Detection in Building Walls Based on Geometric 1120 

and Radiometric Point Cloud Information. Automation in Construction, 134, 104065. 1121 



38 

 

Su, H., Xu, X., Zuo, S., Zhang, S. & Yan, X. (2023). Research Progress in Monitoring Hydraulic Concrete 1122 

Damage Based on Acoustic Emission. Journal of Intelligent Construction, 1(4), 9180024. 1123 

Suárez, I., Buenaposada, J. M. & Baumela, L. (2021). Revisiting Binary Local Image Description for Resource 1124 

Limited Devices. IEEE Robotics and Automation Letters, 6(4), 8317-8324. 1125 

Tan, Y., Li, G., Cai, R., Ma, J. & Wang, M. (2022). Mapping and Modelling Defect Data from Uav Captured 1126 

Images to Bim for Building External Wall Inspection. Automation in Construction, 139, 104284. 1127 

Tanaka, N. & Uematsu, K. (1998). A Crack Detection Method in Road Surface Images Using Morphology, 1128 

Proceedings of IAPR Workshop on Machine Vision Applications (NVA'98), 17-19 Nov. 1998, Univ. 1129 

Tokyo, Tokyo, Japan, 154-157. 1130 

Tang, S. & Chen, Z. (2020). Scale–Space Data Augmentation for Deep Transfer Learning of Crack Damage 1131 

from Small Sized Datasets. Journal of Nondestructive Evaluation, 39(3), 70. 1132 

Taraben, J. & Morgenthal, G. (2021). Methods for the Automated Assignment and Comparison of Building 1133 

Damage Geometries. Advanced Engineering Informatics, 47, 101186. 1134 

Tătar, M. O. & Pop, A. (2016). Development of an in Pipe Inspection Minirobot. IOP Conference Series: 1135 

Materials Science and Engineering, 147, 012088. 1136 

Tong, Z., Gao, J. & Zhang, H. (2017). Recognition, Location, Measurement, and 3d Reconstruction of 1137 

Concealed Cracks Using Convolutional Neural Networks. Construction and Building Materials, 146, 1138 

775-787. 1139 

Tsai, Y. C., Kaul, V. & Mersereau, R. M. (2010). Critical Assessment of Pavement Distress Segmentation 1140 

Methods. Journal of Transportation Engineering, 136(1), 11-19. 1141 

Wei, F., Yao, G., Yang, Y. & Sun, Y. (2019). Instance-Level Recognition and Quantification for Concrete Surface 1142 

Bughole Based on Deep Learning. Automation in Construction, 107, 102920. 1143 

Wu, H., Yao, L., Xu, Z., Li, Y., Ao, X., Chen, Q., Li, Z. & Meng, B. (2019). Road Pothole Extraction and Safety 1144 

Evaluation by Integration of Point Cloud and Images Derived from Mobile Mapping Sensors. 1145 

Advanced Engineering Informatics, 42, 100936. 1146 

Xiao, J.-L., Fan, J.-S., Liu, Y.-F., Li, B.-L. & Nie, J.-G. (2024). Region of Interest (Roi) Extraction and Crack 1147 

Detection for Uav-Based Bridge Inspection Using Point Cloud Segmentation and 3d-to-2d Projection. 1148 

Automation in Construction, 158, 105226. 1149 

Xie, Y., Tian, J. & Zhu, X. X. (2020). Linking Points with Labels in 3d: A Review of Point Cloud Semantic 1150 

Segmentation. IEEE Geoscience and remote sensing magazine, 8(4), 38-59. 1151 

Yang, M.-D. & Su, T.-C. (2008). Automated Diagnosis of Sewer Pipe Defects Based on Machine Learning 1152 

Approaches. Expert Systems with Applications, 35(3), 1327-1337. 1153 

Yeum, C. M. & Dyke, S. J. (2015). Vision-Based Automated Crack Detection for Bridge Inspection. Computer-1154 

Aided Civil and Infrastructure Engineering, 30(10), 759-770. 1155 

Yeum, C. M., Dyke, S. J. & Ramirez, J. (2018). Visual Data Classification in Post-Event Building 1156 

Reconnaissance. Engineering Structures, 155, 16-24. 1157 

Yu, G., Lin, D., Wang, Y., Hu, M., Sugumaran, V. & Chen, J. (2023). Digital Twin-Enabled and Knowledge-1158 

Driven Decision Support for Tunnel Electromechanical Equipment Maintenance. Tunnelling and 1159 

Underground Space Technology, 140, 105318. 1160 

Zhang, A., Wang, K. C. P., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J. Q. & Chen, C. (2017). 1161 

Automated Pixel-Level Pavement Crack Detection on 3d Asphalt Surfaces Using a Deep-Learning 1162 

Network. Computer-Aided Civil and Infrastructure Engineering, 32(10), 805-819. 1163 

Zhang, L., Shen, J. & Zhu, B. (2022). A Review of the Research and Application of Deep Learning-Based 1164 

Computer Vision in Structural Damage Detection. Earthquake Engineering and Engineering Vibration, 1165 



39 

 

21(1), 1-21. 1166 

Zhang, L., Yang, F., Zhang, Y. D. & Zhu, Y. J. (2016). Road Crack Detection Using Deep Convolutional Neural 1167 

Network, 2016 IEEE International Conference on Image Processing (ICIP), 3708-3712. 1168 

Zhang, X., Lin, X., Zhang, W., Feng, Y., Lan, W., Da, Y. & Hu, K. (2023). Intelligent Recognition of Voids 1169 

Behind Tunnel Linings Using Deep Learning and Percussion Sound. Journal of Intelligent 1170 

Construction, 1(4), 9180029. 1171 

Zhang, Y. & Lin, W. (2022). Computer-Vision-Based Differential Remeshing for Updating the Geometry of 1172 

Finite Element Model. Computer-Aided Civil and Infrastructure Engineering, 37(2), 185-203. 1173 

Zhang, Y. & Yuen, K.-V. (2021). Crack Detection Using Fusion Features-Based Broad Learning System and 1174 

Image Processing. Computer-Aided Civil and Infrastructure Engineering, 36(12), 1568-1584. 1175 

Zhang, Z., Fan, X., Xie, Y. & Xu, H. (2018). An Edge Detection Method Based Artificial Bee Colony for 1176 

Underwater Dam Crack Image. SPIE. 1177 

Zhao, S., Kang, F. & Li, J. (2022). Concrete Dam Damage Detection and Localisation Based on Yolov5s-Hsc 1178 

and Photogrammetric 3d Reconstruction. Automation in Construction, 143, 104555. 1179 

Zhao, S., Kang, F., Li, J. & Ma, C. (2021). Structural Health Monitoring and Inspection of Dams Based on Uav 1180 

Photogrammetry with Image 3d Reconstruction. Automation in Construction, 130, 103832. 1181 

Zhong, D.-H., Li, M.-C., Song, L.-G. & Wang, G. (2006). Enhanced Nurbs Modeling and Visualization for 1182 

Large 3d Geoengineering Applications: An Example from the Jinping First-Level Hydropower 1183 

Engineering Project, China. Computers & Geosciences, 32(9), 1270-1282. 1184 

Zhu, Z., German, S. & Brilakis, I. (2011). Visual Retrieval of Concrete Crack Properties for Automated Post-1185 

Earthquake Structural Safety Evaluation. Automation in Construction, 20(7), 874-883. 1186 

Zlatanova, S. (2017). Representation: 3‐D, 1-27. 1187 

Zou, Q., Cao, Y., Li, Q., Mao, Q. & Wang, S. (2012). Cracktree: Automatic Crack Detection from Pavement 1188 

Images. Pattern Recognition Letters, 33(3), 227-238. 1189 

Zou, Q., Cao, Y., Li, Q. Q., Mao, Q. Z. & Wang, S. (2012). Cracktree260 Dataset. Retrieved from 1190 

https://1drv.ms/f/s!AittnGm6vRKLyiQUk3ViLu8L9Wzb  1191 

 1192 

https://1drv.ms/f/s!AittnGm6vRKLyiQUk3ViLu8L9Wzb

