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Abstract 9 

Facility inspection is crucial for ensuring the performance of built assets. A traditional inspection, 10 

characterized by humans’ physical presence, is laborious, time-consuming, and becomes difficult 11 

to implement because of travel restrictions amid the pandemic. This laborious practice can be 12 

automated by emerging smart technologies such as robotics and building information model (BIM). 13 

However, such automated facility inspection (AFI) entails an autonomy of the robots to adaptively 14 

response to the complexity of their environments, which, unfortunately, has rarely been 15 

documented. The goal of this research is to propose a knowledge-driven approach that can 16 

potentially lead to large-scale automation of facility inspection. It equips facility inspection robots 17 

with an ability of unambiguous reasoning for independent decision-making. At the core the 18 

approach is an integrated scene-task-agent (iSTA) model that formalizes engineering priori in 19 

facility management and integrates the rich contextual knowledge from BIM. Experiments 20 

demonstrated the applicability of the approach, which can endow robots with autonomy and 21 

knowledge to navigate the challenging built environments and deliver facility inspection outcomes. 22 

The iSTA model is publicized online, in hope of further extension by the research community and 23 

practical deployment to enable AFI. 24 
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1. Introduction 29 

Once a built asset is handed over, it is officially put into operation, entering the longest phase of 30 

its lifecycle. During this process, facility management is crucial to ensure both functional and 31 

structural performance of the facility [1]. Inspection is the cornerstone of facility management 32 

[2], which aims to gain up-to-date information of the physical assets to ensure that they are 33 

complied with prescribed standards and regulation [3]. To date, facility inspection is conducted 34 

manually, where building surveyors or structure and mechanical engineers are dispatched onsite 35 

to inspect items indicated by an inspection checklist. This practice is often criticized for its 36 

difficult physical presence, low efficiency, and onerous paperwork [3, 4].  37 

 38 

Existing manual facility inspection becomes less and less sustainable as major economies are 39 

experiencing shrinking population [5], leading to decreasing workforce in the facility 40 

management market. The situation is worsened by the on-going COVID-19 pandemic [6], which 41 

makes physical onsite inspection more difficult. The series of challenges have forced the 42 

academia and industry to think outside of the box, resulting in many computerized tools to 43 

support facility inspection. For example, embedded sensing systems, laser scanning, and Radio 44 

Frequency Identification (RFID) technologies have been exploited to expedite facility 45 

information collection [7-9]. The use of mobile devices (e.g., smart phones, and tablets) for 46 

inspection records documentation has become a new norm, freeing inspectors from 47 

overwhelming paperwork [3]. While these technologies have undoubtedly helped inspectors, 48 

much of the inspection work still needs to be manually accomplished onsite.  49 

 50 

The rapid advancement of smart technologies provides abundant opportunities for smarter 51 

facility inspection. Particularly, the development of artificial intelligence (AI) and robots has 52 

been used to replace humans in a wide range of tasks such as floor cleaning and disinfection 53 

[10]. Inspired by these applications, pioneering studies have explored the potential of robots in 54 

facility inspection. These include the development of robotic systems for post-disaster asset 55 

assessment [11], water utility inspection [12], and building facility management [13, 14]. 56 

However, despite the progress achieved, many of the inspection robots still need to be manually 57 

controlled by human operators [11]. Some does have a certain level of autonomy, but they are 58 

generally confined to relatively simple tasks, failing to independently respond to the dynamic 59 

and complex environments. 60 

 61 

Another highly potential technology is building information modeling/model (BIM). As a digital 62 

replica of a built asset, BIM offers a single source of truth wherein all project-related information 63 

is stored, processed, and managed in a central hub [15]. Leveraging the rich information in BIM, 64 

traditional inspection process has been augmented to assist human decision-making [4, 16, 17]. 65 
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BIM can also be linked with robots to allow them better understand of the facility as concerned. 66 

Follini et al. [18] leveraged the priori geometric and semantic data in BIM to enable robot 67 

perception towards the dynamic and unstructured construction site. Chen et al. [19] proposed a 68 

BIM-based global path planning method for ground robot navigation in built environments. Kim 69 

et al. [20] studied the viability of using readily-available BIM to model a semantic building 70 

world as perceived by a robot. These pioneering studies mainly focuses on devising data 71 

interface for construction robot task planning [21]. Nevertheless, much remains unknown on how 72 

BIM and robotics can be integrated to equip the robots with a high level of autonomy in facility 73 

inspection.  74 

 75 

The automation of facility inspection entails an ability to adaptively response to the complexity 76 

posed by the tasks (e.g., “inspection of fire doors in a floor”) and the changing environments 77 

(e.g., “encountering human occupants during inspection”). Robots can be equipped with such an 78 

ability via a knowledge-driven approach. Tenorth and Beetz [22] stressed the importance of 79 

knowledge processing in enabling autonomous robots to do the right thing to the right object in 80 

the right way. Thosar et al. [23] performed knowledge-driven reasoning for tool selection in 81 

household environments. To facilitate interoperability across robotic platforms and unambiguous 82 

reasoning for independent decision-making, a formal representation of knowledge is necessary 83 

[24]. Knowledge formalization is a way to structure the unstructured knowledge, which aims to 84 

reach a formal, explicit specification of a shared conceptualization, i.e., an ontology [25]. The 85 

robotic research community has been active in developing such knowledge representations, 86 

resulting in a series of ontologies [26-28]. However, these ontological knowledge models are 87 

mainly for industrial applications [27] or household services [22]. Facility inspection has its 88 

uniqueness (e.g., the availability of BIM, and the unique workflow of inspection tasks), which 89 

calls for a tailor-made knowledge model to drive automated robotized inspection.  90 

 91 

This research aims to propose a knowledge-driven approach that can potentially lead to large-92 

scale automation of facility inspection using robotics and BIM. At the core of the approach is a 93 

formalized ontological model encompassing three pillar aspects of facility inspection, namely (a) 94 

the scene where a robot operates in, (b) the inspection task, and (3) the robots (agents) 95 

themselves. The three aspects of knowledge are seamlessly connected, forming a scalable 96 

framework called integrated Scene-Task-Agent (iSTA). The remainder of this paper is organized 97 

as follows. Subsequent to this introduction is a literature review. Then, the methodology is 98 

introduced in Section 3. Following that, the iSTA knowledge model is presented in Section 4, 99 

based on which the knowledge-driven approach for automated facility inspection (AFI) is 100 

described in Section 5. The approach is evaluated by experiments in Section 6. Research findings 101 

and the strengths and limitations of the study are discussed in Section 7, and conclusions are 102 
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drawn in Section 8. 103 

 104 

2. Related works 105 

2.1. BIM and robotics for facility inspection 106 

Many studies have applied smart technologies such as BIM and robotics to improve facility 107 

inspection productivity. BIM has mainly been explored as an information-rich source to support 108 

facility inspection. Liu et al. [4] developed a BIM-augmented system for building inspection, 109 

which can help users retrieve project information with ease to assist facility condition 110 

assessment. Kopsida and Brilakis [16] proposed a registration method to align reality-captured 111 

point cloud with BIM for augmented reality (AR)-based inspection. Baek et al. [17] devised a 112 

BIM-integrated AR system for facility management using image-based indoor localization. 113 

Despite the supportive roles of BIM by providing on-demand, easy-access, and intuitive project 114 

information, the process of facility inspection still needs to be manually implemented.    115 

 116 

To improve efficiency and productivity, robotics is increasingly used in facility inspection. Torok 117 

et al. [11] integrated ground robots with computer vision for post-disaster building inspection. 118 

Walter et al. [12] developed a robotic system to inspect wastewater treatment facility. Asadi et al. 119 

[13] presented a vision-based mobile robots for facility construction inspection. In these 120 

applications, the inspection robots need to be controlled by human operators, making physical 121 

presence onsite inevitable. Some research efforts have been made to automate the inspection 122 

process. For example, Tan et al. [29] proposed an automatic drone-based method for building 123 

envelope inspection. Kim et al. [20] explored the applicability of automated robot task 124 

planning/execution. However, the achieved automation is usually confined to simple tasks 125 

executed in relatively well-controlled environments. To equip robots with high-level autonomy 126 

and independent reasoning, a sophisticated knowledge model for facility inspection is necessary. 127 

 128 

2.2. Knowledge-driven robotics and automation  129 

Autonomous task implementation can be realized by various approaches. One is to program all 130 

detailed activities involved into the robot. Obviously, this approach is not sustainable owing to the 131 

onerous programming efforts to cater to every possible environmental change [30]. The other 132 

approach is to represent task implementation knowledge in an interoperable and widely accepted 133 

format so that the robotic agents can reuse existing knowledge and conduct reasoning to adaptively 134 

adjust to the external world [31]. The process of developing a formal, explicit specification of a 135 

shared conceptualization is referred to as knowledge formalization [25]. Because of the promise 136 

presented by the knowledge-driven approach, the robotics and automation community has been 137 

focusing on knowledge formalization in recent years.  138 

 139 
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Malec et al. [32] proposed to streamline the reconfiguration of manufacturing robots via the 140 

knowledge formalization. The research work later evolved into a set of public-available ontologies 141 

called ROSETTA [27]. The IEEE-RAS Ontologies for Robotics and Automation Working Group 142 

released core ontology for robotics and automation (CORA) [26], which has now become a basic 143 

ontology widely used in industrial, surgical, and service robots. Tenorth and Beetz [22] introduced 144 

KnowRob (Knowledge processing for Robots), which soon proved itself one of the most influential 145 

knowledge processing system for autonomous service robots in household environments. The 146 

authors released a second generation of the system called KnowRob 2.0 in 2018 [28]. Other 147 

knowledge formalisms have also been developed for domain-specific purposes, e.g., search and 148 

rescue [33], and household service [23].  149 

 150 

In the AECO (Architecture, Engineering, Construction and Operation) industry, little work has been 151 

done in knowledge formalization for robot autonomy. Neythalath et al. [34] proposed a multi-layer 152 

knowledge encapsulation model for adaptive robotic manufacturing, which, however, is primarily for 153 

industrial robots. Kim et al. [20] explored the applicability of exploiting an IFC-format BIM for 154 

construction robot task planning/execution, of which the effectiveness was evaluated in Gazebo 155 

simulation environment. However, they focused more on the data interoperability problem between 156 

IFC and unified robot description format (URDF), rather than formalizing a general knowledge 157 

model for robotized facility inspection.   158 

 159 

2.3. Limitations of existing studies  160 

Our literature review reveals three major knowledge gaps in knowledge-driven AFI: 161 

(1) Lack of knowledge formalism for break-down process of facility inspection. Previous efforts 162 

mainly focused on representing knowledge of facility management to facilitate data exchange 163 

[35], or energy analysis [36]. Only a few has paid attention to activity-level descriptions of 164 

facility management tasks, which, however, are either for building renovation [37], or bridge 165 

rehabilitation [38]. As a robot needs to understand meaning of task before it can implement it, 166 

there is an urgent need to develop a knowledge representation of inspection activities with 167 

machine-readable language. 168 

(2) Gap between general robot description and domain-specific needs in facility inspection. There 169 

are a number of robot knowledge processing systems proposed by the robotics community. 170 

Nevertheless, they are either for industrial robots [27], or for general applications of service 171 

robots [28]. Facility inspection has its own characteristics that are distinguishing from existing 172 

robot ontology, e.g., the availability of BIM, and the unique workflow of inspection process. 173 

These domain-specific needs should be considered to extend existing general-purpose robot 174 

knowledge representation. 175 

(3) Absence of an integrated model to synergize knowledge from the diverse domains of built asset, 176 
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inspection, and robotics. The automation of facility inspection requires robots to have 177 

knowledge about the scene they are to explore, awareness of the inspection tasks they are to 178 

implement, and self-knowledge on what they are capable of. However, to the best of our 179 

knowledge, an integration of the three aspects of knowledge (i.e., scene, task, and agent) to 180 

enable AFI has not never been reported in literature. 181 

 182 

3. Methodology 183 

This study uses the Methontology approach [39] to developing a knowledge model that will drive 184 

AFI using robotics and BIM. Methontology is a methodological paradigm for building ontologies 185 

from scratch. It typically involves six steps, namely specification, knowledge acquisition, 186 

conceptualization, integration, implementation, and evaluation.  187 

 188 

3.1. Specification 189 

The stage of specification aims at specifying general requirements for the ontology to develop, which 190 

usually include purpose, scope, source of knowledge, and intended users. Table 1 summarizes the 191 

specification of our knowledge model for AFI. It is acknowledged that certain tasks of high 192 

complexity (e.g., measuring designated physical quantity in a narrow pump house) are still difficult 193 

to fully automate. Therefore, the ontology in this study is focused only on visual inspection tasks. 194 

The scope is confined to the inspection of three items, i.e., fire safety, light system, and interior wall. 195 

The primary use is to endow robots with autonomy and domain knowledge for facility inspection. 196 

However, end-users can also be extended to facility managers/owners who can use the ontology to 197 

query robot inspection records. Researchers and robotic developers in the facility management 198 

domain are potential beneficiaries as well, who can reuse the ontology to develop robotized facility 199 

inspection applications. 200 

 201 

Table 1. iSTA ontology specification 202 

Items Descriptions 

Purpose 

To formalize concepts and their interrelation concerning 

built assets (scene), inspection activities/procedures (task), 

and robotic platforms (agents) to enable smart facility 

inspection using autonomous service robots  

Scope 

To focus on visual inspection tasks, including the inspection 

of fire resistance system, lighting system, and assurance of 

the soundness of interior concrete surface 

Users 

The primary end-user is service robots to allow them 

implement facility inspection autonomously. Other potential 

users include facility mangers/owners, and 

researchers/developers in the area.  
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Knowledge source 
Practitioners, domain experts, facility management 

handbook, etc.  

 203 

3.2. Knowledge acquisition  204 

The acquisition of knowledge usually follows methods (e.g., interview, text analysis, and survey) 205 

developed in social science [40]. This study adopts the following approaches to eliciting knowledge 206 

related to RFI. First, we referred to relevant documentation materials for an informal text analysis. 207 

The referred documents include building inspection guidelines, ordinance, and facility maintenance 208 

handbooks published over the past two decades in Hong Kong. The analysis allows us to have a 209 

general understanding of the basic items on facility inspection checklists. Then, professionals from 210 

related domains (i.e., facility management and robotics) were interviewed to gain further insights. 211 

The interviewees include a real estate manager, two wardens of student residents, and two robotic 212 

engineers. A list of questions were prepared based on the disciplinary background of the 213 

interviewees, as listed in Table 2.  214 

 215 

It should be noted that specification and knowledge acquisition do not have to be conducted in 216 

sequential order. In fact, the two were done simultaneously in this study, where the acquired 217 

knowledge can be used to update the specification. For example, the scope initially specified was the 218 

general visual inspection tasks. As more and more knowledge solicited (especially via the phone 219 

interview with the estate manager), the scope was further refined and updated, which was finally 220 

confined to three inspection tasks of “fire safety”, “lighting system” and “interior wall”. We also 221 

understand, from the interview that, these tasks were normally performed by the wardens when they 222 

do daily patrol in the building. If anomalies are found (e.g., “a flickering light”, “a crack on wall”, or 223 

“an unilluminated exit sign”), the wardens should report by taking and uploading photos of the 224 

anomalies.  225 

 226 

To execute the tasks by robots, according to the robotics engineers, an inspection should to be 227 

assigned to different robots on a floor-by-floor basis. This is because different robots have different 228 

locomotion capabilities. To make this assignment possible, knowledge of the robots (e.g., “where 229 

they are”) is necessary. In addition, the inspection tasks should be broken down into basic activities 230 

such as navigation, obstacle avoidance, and photo taking. To plan the navigation path, position 231 

information of the facilities to inspect is needed. 232 

 233 

Table 2. Interview questions for knowledge acquisition. 234 

Role 
Num. of 

interviewees 
Questions 
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Real estate 

manager 
1 

• What are the regular inspection items in operation and maintenance 

phase of your projects? 

• Who perform the mentioned inspection tasks? 

• Which manual inspection tasks do you think will be replaced by 

robots in the near future? 

• What is the inspection frequency? 

• How are the inspection results solicited to support maintenance 

planning? 

Wardens 2 

• How do you carry out [xxx] inspection task? 

• How often is [xxx] inspection implemented? 

• How do you record and report the inspection results? 

Robotic 

engineers 
2 

• What information of the scene and the robots would be needed for a 

robot to implement [xxx] inspection task? 

• How should the [xxx] inspection task be broken down in order to be 

implemented by a robot? 

* Note: the [xxx] is replaced with specific inspection tasks in the interview.  235 

 236 

3.3. Conceptualization 237 

Conceptualization means to structure the obtained knowledge in a conceptual model with a hierarchy 238 

of main terms and their relationships [37, 39]. Based on the knowledge acquired by text analysis and 239 

interview, this study decided to conceptualize the ontology for AFI from three main branches, that is, 240 

the Scene, the Task, and the Agent. Within each branch, corresponding terms and vocabularies are 241 

further enumerated to enrich the ontology. For example, under the “Task”, there are the “fmTask”, 242 

“fmActivity”, and the “adhocAction”, inter alias; under the “fmTask”, there are then 243 

“fmTasFireResist” (fire safety inspection), “fmTasInWallDefect” (interior wall inspection), and 244 

“fmTasLightInspect” (lighting system inspection). 245 

 246 

3.4 Integration, implementation and evaluation 247 

Integration can facilitate the ontology construction by reusing concepts in existing ontologies. 248 

Integration is also an inherent requirement of ontology engineering, which envisions a “shared, 249 

common representation and reuse of knowledge” [41]. To take advantages of existing ontologies, we 250 

adopted two approaches which are referred to as “vertical integration” and “horizontal integration”, 251 

respectively. For vertical integration, basic data schemas, e.g., RDF, RDFS, OWL, XSD, and XML, 252 

are incorporated at the bottom to provide basic vocabularies such as the concept of “type”, 253 

“property”, and “individual” to support ontology development at higher layers. As for horizontal 254 

integration, existing knowledge representations in related domains, e.g., IFC for built environment 255 

and CORA for robotic agents, are utilized as backbones of the “Scene” and “Agent” branches [39].  256 

 257 

Implementation refers to the realization of the conceptualized ontology with ontology-editing 258 
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software. In this research, we created the branches of “Task” and “Agent” using the Web Ontology 259 

Language (OWL) in Protégé. After an ontology is implemented, next step is to evaluate it. A typical 260 

evaluation process includes verification and validation. The former intends to ensure the coherence 261 

and correctness of developed ontology, while the latter aims to evaluate whether the ontology can be 262 

used to solve the intended engineering problem. After the knowledge model was implemented, we 263 

invited the five interviewees at the knowledge acquisition stage to review the ontology for 264 

verification. Afterwards, a series of simulation experiments were carried out in a “ROS+Gazebo” 265 

environment [41] to validate the effectiveness of the model in enabling AFI. 266 

 267 

4. The developed iSTA knowledge model 268 

Using the Methontology approach, a knowledge model is developed for driving automated facility 269 

inspection. The model broadly categorizes facility inspection knowledge into three interconnected 270 

spheres, i.e., built environments “Scene”, inspection “Tasks”, and robotic “Agents”.  271 

 272 

4.1. Ontology of inspection scene 273 

Scene perception is a critical element to form a robot’s autonomy. Such perception is 274 

traditionally gained progressively via a “learning by doing” approach as the robot explores its 275 

environment. BIM provides an unprecedented source of scene information, which can empower 276 

robots for value-added applications such as facility inspection. 277 

 278 

Fig. 1. Graph representation of the iSTA-Scene ontology (A backbone of IFC schema). 279 

 280 

This study adopts the IFC schema, the most recognized knowledge formalization in the built 281 

environment, as the scene ontology. An open-source IFC2RDF converter is used to translate the 282 

original IFC schema to a knowledge graph format [42]. Fig. 1 shows the backbone structure of 283 

the IFC schema that is closely related to the inspection tasks in this study (e.g., fire door and 284 



10 

 

lighting inspection). Of the many entities in IFC schema, IfcProduct is of the most interest for 285 

robotized inspection (the red boxes in Fig. 1). Under the branch of IfcProduct, the abstract 286 

concepts about space (e.g., a floor, or a room) are represented by IfcSpatialStructureElement. 287 

This entity is highly relevant, as it will be used to describe the scope of inspection work so that 288 

suitable robots can be assigned, and related elements can be retrieved. IfcBuildingElement 289 

describes all elements participating in a building system such as walls (IfcWall) and doors 290 

(IfcDoor), which will be the entities to inspect in this study. As for the lighting system, we will 291 

search the IfcLightFixture for related lighting equipment.  292 

 293 

Positions of the building elements are important information, because the robots rely on them for 294 

path planning and navigation (the green boxes in Fig. 1). To retrieve element positions, the 295 

IfcLocalPlacement entity of the interested elements will be used to progressively obtain their 296 

relative positions. For example, the position of an IfcDoor is not explicitly expressed in IFC; 297 

Instead, it is represented as local coordinates (i.e., the IfcAxis2Placement3D) in a recursive 298 

manner, e.g., position relative to IfcOpeningElement, then to IfcWall, and IfcBuildingStorey, etc. 299 

The relative coordinates at different levels will be used to derive global coordinates to guide the 300 

robot navigation.  301 

 302 

Other than position, relationship between building elements and their type properties are also 303 

critical (the blue boxes in Fig. 1). As for the former, how building elements are related to each 304 

other in a spatial concept (e.g., a room, a storey) will help determine the elements to inspect 305 

based on the given scope (e.g., “inspect all the fire doors on the 3rd floor”). Such inclusion 306 

relation is encoded in the schema. For the type property, this information will serve as query 307 

constraints when retrieving corresponding elements, e.g., to find all the fire doors under the door 308 

category. Such information is defined by the IfcTypeObject, and is connected to specific 309 

IfcObject through the IfcRelDefinesByType. 310 

 311 

4.2. Ontology of inspection task 312 

Fig. 2 shows an overview of the developed task ontology in the iSTA model. Here, a facility 313 

inspection task is conceptualized into three interconnected entities. At the top level is the fmTask 314 

class, which divides facility inspection tasks into general categories such as the inspection of the 315 

fire resisting system, or the inspection of the lighting system. A fmTask can be broken down into 316 

multiple fmActivity, e.g., assignment of suitable robotic agents, path planning to navigate to 317 

target positions, and taking photos of elements being inspected. Different fmActivity are chained 318 

by the “isFollowedBy” property to indicate the implementation sequence. During the execution 319 

of an activity, there may be actions the robots need to implement in an ad hoc manner. For 320 

example, in the process of navigating to the inspection target, the robot needs to activate collision 321 
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avoidance module when encountering unexpected obstacles. Such actions are represented by the 322 

adhocAction entity. All the fmTask, fmActivity and adhocAction are related to properties that 323 

define their specific attributes.   324 

 325 

Fig. 2. An overview of the iSTA-task ontology. 326 

 327 

Fig. 3 elaborates the tmTask entity. Subclasses of fmTask represent specific inspection tasks such 328 

as the inspection of fire door safety, and lighting system. An inspection task has basic properties 329 

such as ID (“hasTasID”), starting time (“hasStartTime”), and finishing time (“hasEndTime”), 330 

serving as descriptive information for later enquiry. A task is also related to the sensors needed 331 

for the inspection, and the scope of the inspection work. Such information will be initialized 332 

when a task is assigned. Last but not least, an inspection task is related to its breakdown 333 

fmActivity via the “hasActivities” property. Based on our interview with robotic engineers and 334 

estate managers, a taxonomy of typical inspection activities and ad hoc actions is established, as 335 

explained in Fig. 4. Several activities are required, including the assignment of robots 336 

(fmActAsignRobot), search of building elements to inspect (fmActSearIfcEle), path planning 337 

(fmActPathPlan), taking photos of the inspection targets (fmActTakePhoto), and navigation 338 

(fmActNavigation). Typical ad hoc actions include collision avoidance and obstacle avoidance, 339 

which may need to be activated, respectively, during fmActTakePhoto and fmActNavigation. 340 

Notice that each activity/action in the ontology corresponds to a module of python code, which 341 

will be executed to drive the robot when a command is issued.   342 

 343 

 344 

Fig. 3. Ontology entities related to fmTask. 345 

 346 
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 347 

Fig. 4. Subclasses of fmActivity, adhocAction and their connections. 348 

 349 

 350 

Fig. 5 uses the example of fire door inspection to elaborate the iSTA-Task ontology. In the 351 

middle is a sequence of the inspection activities involved. The task starts with robot assignment. 352 

The assigned robot will be updated to relevant properties (e.g., “isAssignedTo” and “hasAgent”) 353 

for later enquiry. The robot assignment activity is followed by a search of fire door IFC elements 354 

from the scene ontology based on the given inspection scope (via the “hasSearchScope” 355 

property). The retrieved fire door coordinates, along with initial coordinates of the robot, will be 356 

forwarded to entity fmActPathPlan, which plans navigation path for the robot to follow. After 357 

path planning, the fmActNavigation and the fmActTakePhoto are implemented recursively to 358 

navigate the trajectory sections one by one, and take photo of each fire door. The cycle goes on 359 

until all trajectory sections are marked as “finished”.  360 

 361 



13 

 

 362 

Fig. 5. Graph representation of an example inspection task — Fire safety inspection 363 

(fmTasFireResist). 364 

 365 

4.3. Ontology of inspection agent 366 

To follow the principle of reusability, this study extends existing robotic ontologies to meet the 367 

need of facility inspection, as shown in Fig. 6. The Agent ontology is built upon CORA, the core 368 

ontology broadly encompassing main notions across the robotics and automation arena [26, 43]. 369 

CORA is a system comprising modularized ontologies in different levels of axiomatization [24], e.g., 370 

CORA-BARE, CORAX, RPARTS, and SUMO-CORA. Some later ontologies, e.g., ROSETTA, in 371 

downstream subdivision are developed based on CORA. 372 

 373 

This research accepts CORA’s definition to consider a robot as both a device and an agent, and 374 

borrows the “cora-bare: Robot” as the centered entity (see Fig. 6). New properties are added to 375 

describe domain-specific information in facility inspection. For example, the “isStoredAt” 376 

property reflects in which space the robots are stored so that the one within the inspection scope 377 

can be assigned when a new task is issued. The “isPlacedAt” property, on the other hand, stores 378 

the current position coordinates of a robot, which would be used as the starting point for path 379 

planning. The geometry of a robot is approximated by the bounding box dimensions of a robot, 380 

i.e., the properties of “hasRange_length”, “hasRange_width”, “hasRange_height”. Such self-381 

awareness of geometric information is critical for the robots to avoid collision with objects in the 382 

environments. 383 
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 384 

 385 

Fig. 6. Graph representation of the iSTA-Agent ontology. 386 

 387 

In the domain of facility inspection, the variation among robot instances is mainly determined by 388 

the differences of sensors they equipped. This is because agents with different sensors are 389 

suitable for different inspection tasks. For example, a robot with RGB cameras is for fire door 390 

inspection (just to take photos of the doors), whereas a robot with infrared thermal sensor is 391 

needed to detect concealed defects. The “rparts: robotSensingPart” property from RPARTS is 392 

used to delineate the relationship between an agent and its forming sensors. After looking into 393 

various robotic ontologies, it is found that ROSETTA has a relatively complete description of 394 

different classes of sensors. Therefore, the sensing device entities in ROSETTA are included here 395 

to represent different sensors.   396 

 397 

4.4. Integrating the scene-task-agent ontologies 398 

The aforementioned ontologies are integrated into a unified knowledge model for AFI. The 399 

integration is achieved by reusing well-defined entities from one another. Fig. 7 shows the 400 

identified entities that are used across ontologies and their connections. It can be observed that 401 

the iSTA-Task has borrowed several concepts related to robot agents and building 402 

elements/spaces from iSTA-Agent and iSTA-Scene. In the meantime, iSTA-Agent also reused 403 

entities (fmListOfCoor and IfcSpatialStructureElement) defined in its counterparts to describe 404 

robot position. To make sense of the indexed entities across ontologies, namespaces (or prefixes) 405 

of the origin ontologies need to be cited, e.g., the “core-bare” for Robot entity and the “ifc” for 406 

IfcSpatialStructureElement entity. 407 

 408 
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 409 

Fig. 7. Schematic diagram showing integration of the scene, task, and agent ontologies.  410 

 411 

5. iSTA-driven framework for automated facility inspection   412 

Based on the iSTA knowledge model, an implementation framework for automated facility 413 

inspection is developed, as shown in Fig. 8. The framework includes three layers, i.e., the human, 414 

the knowledge, and the robot layers. The human layer lies on the top, which is consisted of 415 

various actors in facility inspection, i.e., estate managers, inspectors, and engineers. The human 416 

staff are not required to carry out the inspection, but only do some periphery works such as 417 

setting inspection requirements, and implementing repair works before and after inspection. The 418 

robot layer encompasses a variety of robots of different types (e.g., ground robots and drones), 419 

which will carry out the inspection. The knowledge layer is made up of iSTA ontologies. It 420 

bridges the humans and the robots by receiving inspection instructions on the one hand, and on 421 

the other hand, driving the robots to inspect facilities automatically.  422 

 423 

Fig. 8. An implementation framework for automated facility inspection driven by iSTA 424 

knowledge model.  425 

 426 

The entire workflow starts by a human facility manager specifying the task type, space scope, 427 

and sensors required by the inspection to conduct. The specified task information is forwarded to 428 
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the iSTA-Task ontology in the knowledge layer, where knowledge on the breakdown workflow 429 

of the task will be retrieved. The iSTA-Scene and iSTA-Agent complement the iSTA-Task 430 

ontology by providing contextual knowledge of the facility and information of the robots. Once 431 

proper robots have been assigned based on the given inspection type, scope, and required 432 

sensors, the robot will execute inspection activities step by step as indicated by iSTA-Task. As 433 

the inspection goes on, the generated inspection data (e.g., inspection ID, assigner, datetime, and 434 

photos) will be updated to the iSTA-Task. After finished, the inspection photos will be checked if 435 

there is any anomaly of the facilities. The checking can either be down manually or automated 436 

with computer vision technologies. If no anomaly is detected, the inspection task is ended, and 437 

can be closed. Otherwise, engineers of relevant disciplines should be sent to the site to address 438 

the problem (e.g., “to fix a flickering light”) until the anomaly is solved.  439 

 440 

6. Experiments 441 

The proposed knowledge-driven approach was evaluated by a series of simulated experiments. 442 

The target facility to inspect is a “J” shape, three-floor office building, as shown in Fig. 9 (a). 443 

The simulation was implemented in an open-source 3D robotics simulator called Gazebo 444 

(version 9.0.0). The Gazebo environment has been integrated with robot operating system (ROS) 445 

for robot programming and control. The simulation was run on Lenovo-R720-15IKBN with an 446 

Intel Core i5-7300HQ CPU and a Intel HD Graphics 630 GPU.  447 

 448 

Fig. 9. (a) BIM model of the pilot project; (b) The scene model after imported to Gazebo. 449 

 450 



17 

 

 451 

Fig. 10. Instantiation of the iSTA model based on the case building.  452 

 453 

6.1. Implementation of the iSTA model 454 

The proposed iSTA knowledge model was instantiated based on the case building. Fig. 10 shows an 455 

overview of the resulted iSTA model. To obtain the iSTA-Scene knowledge base, the Revit model of 456 

the case building was first exported to an IFC format (2×3 Coordination View 2.0). The IFC file was 457 

then processed and converted to an RDF format [42], which describes an entity as a triple that 458 

includes a subject, a predicate, and an object. As for iSTA-Task and iSTA-Agent, we created their 459 

representations from scratch in Protégé. Instances of different types of inspection tasks and robotic 460 

agents were manually input, which will serve as knowledge bases of the inspection workflow and the 461 

available robots for later query operations.   462 

 463 

Note that in iSTA-Task, the instances only store high-level specification of the entities. For example, 464 

the workflow for fire door inspection “fmTasFireResist” needs to be specified by instances of 465 
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different “fmActivity” connected by the “isFollowedBy” property. Once put into use, it is expected a 466 

further instantiation at lower level is needed, e.g., the inspection task/activity that happened at July 467 

30, 2022, or other times. As such instances would continuously accumulated as more and more 468 

inspections are carried out, we designate a separate knowledge base called “iSTA-Task-data” to store 469 

these instances, which would keep the original iSTA-Task as concise as possible. iSTA-Task-data 470 

forms a database wherein all historical inspections are kept in records for future analysis or retrieval.   471 

 472 

6.2. Implementation of iSTA-driven facility inspection 473 

Simulated scenarios were carried out to validate the iSTA-driven AFI approach. With the 474 

approach, a human expert does not need to be physical onsite or control a robot for the 475 

inspection. Rather, he (or she) is only required to designate the scope (e.g., “the 3rd floor”) and 476 

the type (e.g., fire safety inspection to ensure all fire doors are closed) of the inspection work. 477 

Such scope/task designation can be realized via a computer user interface at a central control 478 

room. The designation command will be sent to a central server where the iSTA model is hosted. 479 

On receiving the command, knowledge related to the task workflow, inspection scene, and 480 

available agents will be extracted to automatically inform the inspect operation without human 481 

intervention.  482 

 483 

Suppose a command for “inspecting all fire doors on the 3rd floor” is issued, then the branch of 484 

“fmTasFireResist” in the iSTA knowledge graph will be activated. As indicated by the 485 

knowledge graph (see Fig. 5), the first activity is to assign the task to a suitable robotic agent. 486 

There are three robots in total in our experiments, which are, respectively, stored at the three 487 

floors of the building, all equipped with high-resolution cameras. The robotic agent information 488 

has been keyed in and represented in the iSTA-Agent graph (as shown in Fig. 11 (c)). According 489 

to the required working scope (i.e., “the 3rd floor”) and the needed sensor (i.e., “camera”), the 490 

task was assigned to “SahayakBot_01”.  491 
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 492 

Fig. 11. Implementation of robot assignment: (a) Robots placed at different floors ready for task 493 

assignment; (b) A close look of the robot in the third floor; (c) Corresponding graph 494 

representation of the robot in iSTA-Agent ontology; (d) Python code for robot assignment.  495 

 496 

Once an inspection robot is assigned, next step is to retrieve information of the elements of 497 

interest from the iSTA-Scene ontology. Fig. 12 shows the query code corresponding to the 498 

“fmActSearthIfcFire” entity, and the retrieved information of all fire doors on the third floor. 499 

There are three fire doors in the range of inspection, of which the coordinates have been 500 

retrieved and shown at the button right corner of Fig. 12. Based on the given element coordinates 501 

and the robot initial position (i.e., the “isPlacedAt” property), path planning (i.e., the 502 

“fmActPathPlan” activity) is then executed to compute the robot navigation trajectory. Fig. 13 503 

presents the planned path for the robot to inspect the fire doors one by one. The instantiated 504 

“fmTrajSection” entities and their related properties have also been shown in the figure. For 505 

example, it can be observed that robot has finished navigating along “fmTrajSection_01”, as its 506 

related “ifFinish” is filled with “True”. Similarly, the property “ifBack” of the trajectories 507 

indicates that the black dash line is the trajectory path that leads the robot to its original position. 508 
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Such knowledge will inform the inspection robot to execute the planned path step by step, and 509 

finally returning to the initial starting point.  510 

 511 

Fig. 12. Implementation of IFC element searching (using fire door search as an example). 512 

 513 

Following the workflow indicated by iSTA-Task, the navigation activity “fmActNavigation” will 514 

be activated immediately after the “fmActPathPlan”. Fig. 14 (a) shows that the robot is 515 

navigating from fire door ① to fire door ② along the planned trajectory “fmTrajSection_02”. 516 

Rviz, a ROS graphical interface, was used to visualize the process from the robot’s perspective. 517 

The costmap in Fig. 14 (b) presents a 2D description on the difficulty of traversing different 518 

areas of the scene, wherein the pink and wathet regions represent the sensed obstacles and 519 

corresponding inflated areas. An inflated area is defined as a buffer zone around the obstacles 520 

that should be avoided by the robot planned path. The robot has a depth camera in the front of its 521 

base platform, which can scan the environment ahead of the robot (image in the middle of Fig. 522 

14 (b)).  523 
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 524 

Fig. 13. Implementation results of path planning.  525 

 526 

 527 

Fig. 14. Robot navigation to inspect fire door #2.  528 

 529 
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 530 

Fig. 15. Photo taking for visual inspection of (a) fire door, and (b) lighting fixture. 531 

 532 

Once the robot get to the end of a trajectory section, the photo-taking activity (i.e., the 533 

“fmActTakePhoto” entity) will be activated to take photo of the target for visual inspection. Fig. 534 

15 shows the example scenarios of fire door and lighting fixture inspection. On activation, the 535 

“fmActTakePhoto” will first adjust the robot arm’s posture to point the camera towards the target 536 

(e.g., a fire door or a lamp). Then, a photograph of the target will be captured and stored. 537 

Computer vision algorithms such as deep learning (DL) can be used to process the captured 538 

photograph to determine if the inspected elements are compliant with relevant ordinance (e.g., 539 

“the fire door is kept close”). If anomalies are detected, the corresponding competent department 540 

should be notified to address the issue in due time.  541 
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 542 

Fig. 16. Knowledge-driven collision avoidance during robot navigation. 543 

 544 

It is worth-mentioning that the inspection robots are operated in a dynamic environment, with 545 

possibility to come across facility occupants. The iSTA knowledge model can inform the robot 546 

how to deal with such situation. Fig. 16 simulates a scenario where the robot encounters a human 547 

in the corridor. As we mentioned before, the “fmActNavigation” has a property called 548 

“hasConcurAction”, which directs to the “ahActAvoidObstacle” entity. This means the collision 549 

avoidance will be executed when needed during the navigation. When the robot detects an 550 

unexpected obstacle (i.e., a human in this case), the costmap will be updated accordingly, and the 551 

collision avoidance mode will be activated. Then, the moving trajectory is re-planned based on 552 

the updated costmap to bypass the obstacle. As shown in Fig. 16, the robot is successfully guided 553 

by the re-planned trajectory to safety navigate through the human. The autonomy to avoid 554 

collision allows the inspection robot to co-exist with humans in dynamic environment.   555 

 556 

7. Discussion 557 

As the built environments age [44], the importance of facility inspection has never become so 558 

stringent. In face of the global pandemic, traditional manual inspection, characterized by its 559 

requirement on physical presence, can no longer sustain itself. Potential automation of facility 560 

inspection by the use of robotics and BIM presents a way out. Such automated facility inspection 561 

requires the robotic agents to be able to independently react to the changes and complexity of 562 
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their tasks and environments [22]. While pre-programming the robots with “if …, then …” rules 563 

can give them a certain level of adaptivity in a controlled environment, it is not suitable in an 564 

open, dynamic scenario like facility inspection. The proposed knowledge-driven approach 565 

presents an alternative to achieve AFI by equipping the robots with an ability of unambiguous 566 

reasoning for independent decision-making.  567 

 568 

The study contributes to the knowledge body from three aspects. First, a knowledge-driven 569 

approach is developed to endow robots with knowledge processing and reasoning capability to 570 

carry out inspection independently. It opens a new venue to counteract the diminishing 571 

productivity in facility management by the application of robotics, BIM and other automation 572 

technologies. Second, the developed iSTA framework represents the first of its kind for 573 

knowledge modelling in the arena of robotized facility inspection. The iSTA model is a symbolic 574 

representation [23] of knowledge covering all spheres (i.e., the facility “scene”, the inspection 575 

“task”, and the robotic “agent”) of facility inspection. It is built based upon the reusability 576 

principle, and thus can take advantage of existing IFC-formatted BIM to enable scene 577 

perception. Third, the iSTA model is made publicly available (github.com/civilServant-578 

666/iSTA). It can help researchers and developers train their robots for automated facility 579 

inspection. In addition, it can be further enriched by the research community with formalized 580 

knowledge about other tasks in facility inspection. 581 

 582 

Despite the advantages, future research is suggested to further develop the proposed approach. 583 

Firstly, the iSTA model represents a knowledge base of high-level concepts (tasks, activities, 584 

inspection targets, etc.) in facility inspection. However, not all knowledge in an inspection can be 585 

engineered in a “top-down” manner like iSTA modelling. For example, it is difficult to handcraft 586 

all features/patterns to teach a robot how to distinguish if a fire door is closed based on the 587 

collected photo. Such abilities, nonetheless, can be easily acquired in a “bottom-up” manner by 588 

learning from data using deep neural networks. The “top-down” knowledge engineering and 589 

“bottom-up” neural nets represent two schools of thoughts in AI, that is, symbolism and the 590 

connectionism. There is a growing trend of convergence between the symbolism and 591 

connectionism [45] in recent years. For the automation of facility inspection, future research 592 

should seek to integrate the symbolic iSTA knowledge model with the connectionism-based DL 593 

techniques to make use of advantages of both approaches. Secondly, although effectiveness of 594 

the proposed approach has been validated, further efforts are needed to enrich the iSTA model to 595 

enable robotic agents to take up more facility inspection tasks in more complicated 596 

environments. The iSTA model is intended to provide a high-level conceptual structure upon 597 

which further specification and extension can be developed in a relatively straightforward way. 598 

Therefore, it is hoped that future research can further develop the iSTA model with more detailed 599 

https://github.com/civilServant-666/iSTA-model-for-robotic-enabled-facility-inspection
https://github.com/civilServant-666/iSTA-model-for-robotic-enabled-facility-inspection
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task description (e.g., object manipulation), and knowledge on more challenging tasks (e.g., 600 

pump house inspection).  601 

 602 

8. Conclusions 603 

In recent years, there is growing momentum to boost facility management productivity by the 604 

applications of automation and robotics technologies. Examples of these applications include 605 

robots that are increasingly seen in floor cleaning, disinfection, and indoor guidance. In line with 606 

the ongoing trend, this research proposes a knowledge-driven approach that can potentially lead 607 

to large-scale automation of facility inspection using robotics and BIM. With the Methontology 608 

approach, a knowledge model is developed. It encompasses three pillar aspects of facility 609 

inspection, i.e., knowledge of the scene where a robot operates, knowledge of the inspection task 610 

to carry out, and knowledge of the robots (agents) themselves. BIM is leveraged as a readily-611 

available source of facility information to form the scene knowledge base. The three aspects of 612 

knowledge are seamlessly integrated, forming a scalable framework called iSTA. An 613 

implementation framework for automated facility inspection is devised based on the iSTA model.  614 

 615 

A series of simulated experiments were carried out to demonstrate the applicability of the 616 

proposed approach. It is shown that the iSTA knowledge model can endow robotic agents with 617 

autonomy and knowledge to navigate the challenging built environments and deliver facility 618 

inspection outcomes. Via the automation based on robotics and BIM, the efficiency and 619 

productivity of facility inspection have been improved. We publicized the iSTA model online, 620 

hoping that it can be further enriched and can help developers deploy their robotic systems for 621 

automated facility inspection. 622 
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